Wireless, RF & Smart Dust

Research that includes:

  • Tuneable RF components: capacitors, inductors, transformers
  • RF microrelays
  • High frequency MEMS resonators: devices, structures, and processes

RTH45: Synchronization and interaction of MEMS oscillators

Peter Chen
Donovan Lee

With MEMS oscillators realized frequently in research, and nanoscale resonators around the corner, it is now not only feasible but interesting to have multiple oscillators integrated on one chip. However, the possible mechanical and electrical interactions between closely-placed devices have not been investigated. Recent surges in mathematical research have shown that it is not only possible to achieve synchronization between coupled oscillators; it is also possible to provide a computational solution with a larger array of coupled oscillators. In the MEMS world, this translates into...

NT19: MEMS Microswitch for High-Voltage Applications

Fabian Strong

A microswitch utilizing thermoelectric MEMS actuators is being designed, fabricated, and characterized. The switch is intended to switch >1000 VDC with over 100 gigaohms off-state resistance. The main challenge in designing these switches is determining a contact electrode configuration with the ability to stand off high voltages, while still being able to bridge the contact gap using MEMS actuators. Extensive high voltage breakdown testing has confirmed that the breakdown response for planar MEMS polysilicon devices is similar to the publushed response of larger metal electrodes...

BPN416: AlN Piezo: Aluminum Nitride RF Filters

Jan Kuypers

The goal of this project is to use piezoelectric Aluminum nitride (AlN) MEMS resonators to develop RF bandpass filters which can achieve multiple frequency operation with CMOS compatibility and high quality factor. These highly-integrated bandpass filter arrays with low power dissipation and small form factor will enable next-generation wireless communication systems.

Project end date: 02/07/08

BPN373: AlN Piezo: Aluminum Nitride CMOS-Integrated Accelerometer (MiNaSIP)

Andrew Cardes

The purpose of this project is to investigate the use of Aluminum-Nitride (AlN) thin films in accelerometer design. Aluminum Nitride is attractive in this regard as the piezoelectric properties of AlN remove the need for electrostatic comb structures for position sensing and the deposition of AlN is viable material for post-CMOS MEMS fabrication. The long-term objective of this project is to realize self-temperature compensating resonators through choice of electrode, sacrificial, and substrate materials; and to quantify energy dissipation caused by thermo piezo elastic dissipation...

BPN368: AlN Piezo: Aluminum Nitride Wideband RF Filters

Yun-Ju (Matilda) Lai

The goal of this project is to use piezoelectric Aluminum Nitride (AlN) MEMS contour mode resonators to develop RF bandpass filters which can achieve multi-frequency per chip, CMOS compatibility and high quality factor Q. The highly-integrated bandpass filter arrays with low power dissipation and small form factor, will be promising technology to accomplish next-generation wireless communication systems.

Project end date: 07/30/08

BPN425: Aluminum Nitride-Based Actuators for Tunable Terahertz Electronics

Mona Jarrahi

Fast growing applications of terahertz frequency in different areas such as material spectroscopy, medical imaging, radar systems, and security makes highly efficient, compact terahertz electronics highly on demand. However, the electromagnetic spectrum range at the corresponding frequencies (between 0.1 and 10 THz) has not been completely explored, due to the limitations of traditional microwave technology at long wavelengths and optical/laser sources at shorter wavelengths.

Project end date: 07/30/08

BPN415: Localization of Footsteps through Ground Vibrations

Travis Massey

Target localization, the ability to determine the location of a target, is becoming increasingly attractive for purposes of security and automation. Vibrational localization is the method of sensing and calculating the target’s location using vibrations transmitted through the ground. This method of localization does not require a line of sight to the target, is not limited by dilution of precision, and can detect any moving object or person. Vibrational localization was formerly restricted by the noise performance and sensitivity limitations of accelerometers and other circuit...

BPN446: AlN Piezo: Monolithic Acoustic RF MEMS Modules

Jan H. Kuypers

The goal of this research is the development of RF modules for wireless applications equipped with acoustic MEMS based filters and oscillators. Using CMOS compatible post-processes the acoustic components are to be fabricated directly on circuitry. In order to justify the increased complexity of such a module besides the advantage of size and cost, this will require a performance comparable to existing modules. Therefore the greatest challenges concerning the acoustic MEMS filters are lowering the insertion loss and increasing the bandwidth. The most important issue for oscillators...

BPN385: MiNaSIP 2.B.1: Piezoelectric/Electrode/Ambient Interaction in Contour-Mode Resonators

Marcelo B. Pisani

Recent advancement in wireless communication requires substantial improvement in the performance of physical devices needed to implement ubiquitous, multi band, multi standard and reconfigurable radio frequency (RF) systems. Aluminum nitride contour-mode resonators have been proven as one of the most promising technologies for the implementation of fully-integrated single-chip transceivers, but remarkable efforts are still needed to be undertaken in order to improve the performance of RF MEMS filters, local oscillators and intermediate frequency (IF) filter stages. Investigations are...

BPN459: High Frequency Optoelectronic Oscillators (OEO)

John Wyrwas
Erwin K. Lau

There has been recent interest in low noise oscillators in the V and W bands (40-111 GHz) for satellite data communication and RADAR. For these applications, close in to the carrier phase-noise performance is important. Several competing very-low-phase-noise oscillator technologies exist at lower microwave frequencies, including dielectric resonator oscillators (DROs), sapphire loaded cavity oscillators (SLCOs), surface acoustic wave (SAW) oscillators, and optical electronic oscillators (OEOs). All of these face difficulties in being extended up to the new bands of interest. OEOs,...