NanoTechnology: Materials, Processes & Devices

Research that includes:

  • Development of nanostructure fabrication technology
  • Nanomagnetics, Microphotonics
  • CMOS Integrated Nanowires/Nanotubes (CMOS-Inn)

BPN971: High-Efficiency Ink-Based Mid-IR LEDs and Photodetectors

Naoki Higashitarumizu
Kyuho Lee
2023

Midwave infrared (MWIR) is significant for applications such as sensing, imaging, and spectroscopy. Traditional materials in this wavelength range, III-V and II-VI semiconductors, has poor performance due to their high Auger recombination rate and large dark currents. Due to the better properties of black phosphorus (BP) such as its low Auger recombination coefficient, BP-based mid-infrared light emitters and detectors have shown to outperform the state-of-the-art commercial devices. However, the scalability of these devices remains questionable because of the limitations of...

BPN982: Color-Tunable Alternating Current Light Emitting Diodes (New Project)

Jongchan Kim
Vivian Wang
2022

Alternating current (AC) driven light emitting devices (LEDs) are recently dragging attention due to its efficient color tunability. These devices consist of multilayer structure as the direct current (DC) driven LEDs, but the multilayer structure has drawbacks such as the large amount of material usage that increases the fabrication cost, and the difficult yield control due to a number of processing steps. In contrast, a recently demonstrated AC driven LED with a single contact has several advantages compared to the previous structures such as simple device structure, diverse...

BPN994: Atomically Dispersed Supported Metal Catalysts for Robust Chemiresistive Gas Sensors (New Project)

Yaprak Ozbakir
2023

Long-term stability of chemiresistive gas sensors is essential for their use in industrial and residential safety and air-quality monitoring systems. Incorporation of noble metals into the gas sensors has been proved to be an effective strategy to enhance their sensitivity and selectivity. However, noble metal particles are prone to poisoning, resulting in catalyst deactivation. Atomically dispersed supported metal catalysts constitute a new class of materials that contains isolated individual atoms or synergistically coupled few-atom ensembles dispersed on, and/or coordinated with...

BPN993: Safe and Deformable Soft Batteries (New Project)

Peisheng He
Jongha Park
2023

Safe and deformable soft batteries are desirable for modern products that call for good safety features such as cell phones and good conformability to be embedded onto irregular surfaces in electronics systems. Current Li-ion batteries on the commercial market are rigidly packaged and hermetically sealed to prevent: 1) the intrusion of moistures which degrade performances; and 2) the leakage of toxic and flammable electrolytes due to mechanical damages. On the other hand, various deformable/stretchable batteries have been reported in research articles and they have shown good...

BPN977: Metal-Loaded Metal Oxide Nanocomposites for Electronic Gas Sensors

Yaprak Ozbakir
Tzu-Chiao Wei
Veronica Arriaga
Sterling Cavanaugh
Carlo Carraro
Roya Maboudian
2023

Semiconducting metal oxides (MOX) such as SnO2 are an industry-standard material for chemiresistive sensing. However, many MOX-based gas sensors suffer from poor sensitivity, limited selectivity—particularly in the presence of water vapor—and insufficient stability. To address these shortcomings, catalytically active noble metals, such as Pd, are loaded onto the MOX materials to form noble metal-loaded MOX nanocomposites. In this work, we focus on Pd-loaded SnO2 (Pd/SnO2) due to their promising sensitivity to and selectivity for CO and CH4. Pd/SnO2 nanocomposites with varying Pd/Sn...

BPN981: Suppressing Energy Losses in Compact Superconducting Qubits

Kadircan Godeneli
Mutasem Odeh
Eric Li
2022

State-of-the-art quantum computers currently have qubit gate error rates that are too large for practical computing. Quantum error correction can protect computations from physical errors by encoding logical qubits in many physical qubits. However, physical qubit error rates need to be sufficiently low to minimize resource overhead and suppress errors. As a result, compact qubit designs with small dissipation and error rates are crucial to scaling up a fault-tolerant quantum computer. In this project, we aim to address the scaling up of superconducting quantum processors by...

BPN980: Spin-Photon Interfaces in Silicon Photonics

Hanbin Song
Lukasz Komza
Yu-Lung Tang
Yiyang Zhi
2022

Color centers in silicon have recently shown their potential as telecom-band single photon emitters with high scalability and compatibility with silicon photonics. The silicon color centers investigated so far, however, are not suitable for quantum computation and communication applications which require quantum memories for storing and processing quantum information transmitted by photons. Such quantum memories can be implemented using the electron and nuclear spins of color centers that provide long-lived quantum states. In this project, we are investigating new color centers that...

BPN967: Indistinguishable Photons from Quantum Emitters in Silicon Photonics

Lukasz Komza
Yu-Lung Tang
Hanbin Song
Zihuai Zhang
2023

The G center, an atom-like single-photon emitter in silicon, has emerged as a promising candidate for realizing a quantum-coherent light source in integrated photonics. Our recent work demonstrating two-photon quantum interference with a single waveguide-integrated G center highlights the utility of G centers for photonic quantum information applications. However, improvements in the optical coherence properties of the G center must be achieved to enable its technological implementation. We will address this challenge by leveraging the integration capabilities of the silicon platform...

BPN988: Modulation of Optoelectronics in Quantum Dot Film

I K M Reaz Rahman
Naoki Higashitarumizu
2023

Core/shell quantum dots are known to have high photoluminescence quantum yield for their passivation through thicker shell by suppressing surface trap states. In spite of their excellent exciton dynamics, these bright quantum dots tend to suffer from stability issues and degradation over time. Here we investigate their photo-physical properties due to charge injection, which leads to unfavorable recombination pathways through charged excitons. This provides an additional tuning knob for modulation of their photoluminescence quantum yield after synthesis, thereby offering a means of...

BPN984: Large-Area Processable Luminescent Black Phosphorus

Kyuho Lee
2023

Black phosphorus (BP) is a promising material for optoelectronic applications due to its direct bandgap at all thicknesses, and low Auger recombination coefficient at high carrier densities. BP, being a two-dimensional material, lacks scalability, for which techniques for its large-area processing are important. In this work, we find methodologies to utilize this material for large-scale optoelectronic applications.

Project currently funded by: Federal