NanoTechnology: Materials, Processes & Devices

Research that includes:

  • Development of nanostructure fabrication technology
  • Nanomagnetics, Microphotonics
  • CMOS Integrated Nanowires/Nanotubes (CMOS-Inn)

BPN635: Structured Substrates for Enhancing the Water-Splitting Efficiency of Earth Abundant Materials

Maxwell Zheng

Here we focus on nano- and micro-structuring earth abundant materials to improve their water splitting performance, primarily by increasing the optical path length. The focus is on isolating structural effects and so we fix the material system to be titanium dioxide. In one structure we use texturized carbon nanotubes as the back contact. In another, we are planning to use micro-scale triangular grooves.

Project end date: 02/06/12

BPN640: p-InP nanopillars for highly efficient water splitting

Min Hyung Lee

The photoelectrochemical evolution of hydrogen using p-InP nanopillar arrays decorated with metallic co-catalyst is explored. The nanopillar devices exhibit an great enhancement in the conversion efficiency, as compared to planar substrates. This behavior is mainly attributed to the low surface reflectivity of nanopillar arrays along with the enhanced surface area for catalytic reactions. Of particular importance to this architecture is the use of InP as the absorber layer, which is known to have a low carrier surface recombination velocity, thereby minimizing the loss of...

BPN487: QES: High-Resolution Direct Patterning of Nanoparticles and Polymers by a Template-Based Microfluidic Process

Michael T. Demko

High-resolution patterns of nanoparticles and polymers are created on a variety of substrates using a template-based microfluidic process. A rigid, vapor-permeable polymer mold is created by polymerizing 4-methyl-2-pentyne and solvent casting the resulting polymer. The mold is pre-filled with solvent by pressing into a coated substrate, and then filled with nanoparticle or polymer ink by permeation pumping. This allows high resolution patterning with good control over the three-dimensional geometry in a completely additive process with no residual layer or etching required. This...

BPN598: Toward Silk-based Biomedical Devices

Brendan W. Turner
Frank B. Myers

Although silk is commonly known as a fiber, dissolved silk protein has recently received significant attention for its use in creating biocompatible, biodegradable, and mechanically tough materials. We have discovered that reconstituted silk fibroin (RSF) is an excellent material for molding of nano- and micro-scale patterned features. RSF alleviates several problems seen with current polymers used for micromolding (e.g. PDMS), such as device collapse and feature rounding. We have fabricated stable silk nano- and microstructures with aspect ratios of ~10 (height to diameter) where...

BPN567: Compound Semiconductor on Insulator (XOI) FETs

Rehan R. Kapadia
Kuniharu Takei
Hui Fang
Steven Chuang

Due to their high mobility, the integration of compound semiconductors on Si has been actively studied over the past several years. This integration, however, presents significant challenges. The conventional method of addressing this problem consists of growth of multiple epilayers of materials to address the lattice mismatch between Si and the desired semiconductor, leading to highly complex fabrication techniques. Here we demonstrate high performance compound semiconductor on insulator (XOI) field effect transistors (FET) consisting of ultra-thin InAs nanoribbons (NR) on insulator...

BPN554: TiO2 Nanoswords for Clean Energy Applications

Heather C. Chiamori

The uniquely shaped titanium dioxide nanoswords are studied for energy and environmental applications. These nanostructures are synthesized using both induction heating and furnace-based methods.

Project end date: 08/16/12

BPN594: QES: Fast, High-Throughput Micro, Nanoparticle Printing with Tunable Resolution & Size

Sun Choi

We report a novel technique to print micro, nanoparticle assembly with tunable resolution (from several micron to hundreds micron) by using porous silicon membrane-based printing head. Creating regular, repetitive and well-defined three-dimensional patterns of particle assembly in targeted area is a major bottleneck in various applications such as the fabrication of three-dimensional photonic crystals, printed electronics on flexible substrates, colloidal quantum-dot based devices for display, plasmonics and etc. In this presented work, micro, nanoparticles are printed via porous...

BPN496: Chemomechanical Nanomachine for Artificial Biomolecular Signal Transduction and Drug Delivery

Gabriel J. Lavella

We have developed a class of nanomachine that can rationally designed to chemomechanicaly respond to user specified antigenic biomolecules. Our long term goal is to demonstrate that these devices can be employed to achieve highly localized controlled of the cell signaling network.

Project end date: 08/16/12

BPN636: Extremely Elastic Strain Gauges via Nanotube Percolation Poisson Capacitors

Daniel J. Cohen

There is a growing need for stretchable electronics and sensors, and so we have developed a best-in-class stretchable strain gauge designed to meet this challenge. Our device works by measuring capacitive changes in parallel networks of carbon nanotubes separated by an elastomer. The device supports strains up to 100% with less than 3% variability over 3000 cycles, and does so at a materials cost of under 50 cents/sensor. The sensitivity is 0.99, while the theoretical maximum for a stretchable gauge is 1. By contrast, metal-foil gauges (the current standard) can only sustain strains...

BPN533: Nanomaterial-Based Artificial Skin Sensor

Kuniharu Takei
Toshitake Takahashi
Chuan Wang

Flexible large-scale devices are of great interest for wearable human interface applications. We have developed a technique of "uniform nanomaterial patterning" for the integration of high- performance inorganic nanomaterials on user-defined substrates. This project is to realize large scale flexible multi-functional electronics by utilizing nanomaterials such as nanowires, nanotubes, and nanoparticles. As one of applications, we here demonstrate mechanically flexible large scale high sensitive multi-functional artificial skin by proposing different types of sensors such as a...