NanoTechnology: Materials, Processes & Devices

Research that includes:

  • Development of nanostructure fabrication technology
  • Nanomagnetics, Microphotonics
  • CMOS Integrated Nanowires/Nanotubes (CMOS-Inn)

BPN875: Transfer-Free Synthesis of Graphene on Insulating Substrates

Leslie L. Chan
Zhongtao Wang
Yuhui Xie
2018

Graphene has become one of the pinnacles of nanomaterials research, touted for its manifold applications and potential as “the next silicon” in electronics. At this time, integrated production of graphene-based devices remains a barrier, requiring a process that is reliable, large-scale, and compatible with conventional fabrication approaches. One common method for graphene synthesis is chemical vapor deposition (CVD) on metal substrates, which requires a transfer step to target materials (e.g., insulating substrates for device applications). However, this extra transfer step often...

BPN904: Ultrahigh Aspect-Ratio Gold Nanostructure for Electrochemical Sensing in Liquid Media

Yuhui Xie
2019

Electrode surface structure and functional modification with higher catalytic response are of great interest in many technologies. This work aims at designing highly efficient nanostructured gold- based electrochemical catalyst. Using the calixarene-capped gold nanoclusters as the construction unit, we report on the formation of gold films with nanoporous structure via hydrogen-bubble templating under electrochemically reducing conditions. The resulting nanoporous gold (NPG) assembly possesses the highest aspect ratio (defined as the ratio of the pore size to the wall thickness)...

BPN919: SiC-Based Nanostructures for Flexible Devices

Steven R. DelaCruz
Siyi Cheng
2019

Due to their high mechanical robustness, thermal stability, chemical resilience, and breakdown field strength, silicon carbide (SiC)-based nanostructures can be broadly utilized in devices such as field emitters, supercapacitors, and gas sensors. While SiC nanostructures have been widely explored on rigid substrates, their integration on flexible substrates has been limited. Carbon cloth (CC) is an optimal substrate for direct SiC...

BPN927: CeO2/Au Nanostructured Material for Electrochemical Detection of Dopamine

Yuhui Xie
2019

Dopamine (DA) plays a significant role in the central nervous system, the loss of which is linked to various problems, e.g., schizophrenia, drug addiction and Parkinsons disease. Accordingly, the development of sensitive and selective detection method for DA is of great interest. Electrochemical DA detection has gained increasing attention due to its operation simplicity and rapid response. Despite these advantages, electrochemical methods often lack...

BPN843: Non-Enzymatic Electrochemical Sensors Based on Wearable Carbon Textile

Siyi Cheng
Hu Long
2019

Wearable sensors have attracted considerable interest in various fields, such as clinical diagnosis, environmental pollution monitoring and food quality assessment, due to their practical advantages of operation convenience, low cost and in-situ analysis mode. Among different sensing methods, electrochemical sensing is very popular due to its high efficiency and accuracy. Broadly speaking, there are two kinds of electrochemical biosensors:...

BPN936: Hafnium Diboride-Based Gas Sensor

Steven R. DelaCruz
Yong Xia
Siyi Cheng
2019

While the transition metal oxides and dichacogenides have been extensively used as sensing materials, the transition metal diborides (TMDBs) have not been explored to any appreciable extent. As a class, TMDBs possess a variety of unique properties, including very high melting points, high thermal and electrical conductivities, and good corrosion resistances, and therefore hold promise as materials for the sensing of harmful gases or at elevated temperatures....

BPN856: Broadly-Tunable Laser with Self-Imaging Three-Branch Multi-Mode Interferometer

Guan-Lin Su
2019

Tunable lasers with high side-mode suppression ratios (SMSRs) are cost-effective solutions to replace multiple DFB lasers in wavelength-division multiplexing (WDM) systems. Two arm interference-based devices, such as C3- and Y-branch lasers, have advantages over grating- and ring-resonator-based counterparts in terms of cost and fabrication complexities; however, it is fundamentally difficult to achieve high SMSRs and wide tuning ranges simultaneously. In our proposed...

BPN860: Laser Printed Carbide-Graphene for Paper Electronics

Yu Long
Minsong Wei
Renxiao Xu
Junwen Zhong
Peisheng He
Fanping Sui
2019

Paper electronics have attracted researchers’ attention in recent years for its potential advantage of disposability, foldability, low density and low cost. In our previous studies, we have shown a drastically different approach by a direct-write laser patterning process on paper to realize various basic device applications, such as a foldable triboelectricity generator and a folded supercapacitor as the potential paper-based power source for paper electronics, a wireless...

BPN928: Black Phosphorous Based Infrared Light Emitting Diodes

Niharika Gupta
2019

Two-dimensional (2D) materials such as MoS2 and black phosphorous (bP) have shown promise for high performance optoelectronic and electronic applications, due to their naturally terminated surfaces. Unlike the majority of 2D materials, which are only direct bandgap at the monolayer limit, bP maintains a direct bandgap for all thickness, which ranges from 1.4 to 0.3 eV. This property can be leveraged to demonstrate light emitting diodes (LEDs) based on bP/MoS2 heterostructures. High EQE can be...

BPN909: High Quality Synthetic Monolayer Semiconductor

Hyungjin Kim
2019

In recent years, there have been tremendous advancement in the growth of monolayer transition metal dichalcogenides (TMDCs) by chemical vapor deposition (CVD). However, obtaining high photoluminescence quantum yield (PL QY), which is the key figure of merit for optoelectronics, is still challenging in the grown monolayers. Specifically, the as-grown monolayers often exhibit lower PL QY than their mechanically exfoliated counterparts. In this work, we demonstrate synthetic tungsten diselenide (WSe2)...