Abstract:
The proliferation of wireless services creates a pressing need for compact and low cost RF transceivers. Modern sub-micron technologies provide the active components needed for miniaturization but fail to deliver high quality passives needed in oscillators and filters. This dissertation demonstrates procedures for adding high quality inductors and tunable capacitors to a standard silicon integrated circuits. Several voltage-controlled oscillators operating in the low Giga-Hertz range demonstrate the suitability of these components for high performance RF building blocks.
Two low-temperature processes are described to add inductors and capacitors to silicon ICs. A 3-D coil geometry is used for the inductors rather than the conventional planar spiral to substantially reduce substrate loss and hence improve the quality factor and self-resonant frequency. Measured Q-factors at 1 GHz are 30 for a 4.8 nH device, 16 for 8.2 nH and 13.8 nH inductors. Several enhancements are proposed that are expected to result in a further improvement of the achievable Q-factor.
This research investigates the design and fabrication of silicon-based IC-compatible high-Q tunable capacitors and inductors. The goal of this investigation is to develop a monolithic low phase noise radio-frequency voltage-controlled oscillator using these high-performance passive components for wireless communication applications. Monolithic VCOs will help the miniaturization of current radio transceivers, which offers a potential solution to achieve a single hand-held wireless phone with multistandard capabilities.
IC-compatible micromachining fabrication technologies have been developed to realize on-chip high-Q RF tunable capacitors and 3-D coil inductors. The capacitors achieve a nominal capacitance value of 2 pF and can be tuned over 15 % with 3 V. A quality factor over 60 has been measured at 1 GHz. 3-D coil inductors obtain values of 4.8 nH, 8.2 nH and 13.8 nH. At 1 GHz a Q factor of 30 has been achieved for a 4.8 nH device and a Q of 16 for 8.2 nH and 13.8 nH inductors.
A prototype RF voltage-controlled oscillator has been implemented employing the micromachined tunable capacitors and a 8.2 nH 3-D coil inductor. The active electronics, tunable capacitors and inductor are fabricated on separated silicon substrates and wire bonded to form the VCO. This hybrid approach is used to avoid the complexity of building the prototype oscillator. Both passive components are fabricated on silicon substrates and thus amenable to monolithic integration with standard IC process. The VCO achieves a -136 dBc/Hz phase noise at a 3 MHz offset frequency from the carrier, suitable for most wireless communication applications and is tunable from 855 MHz to 863 MHz with 3 V.
Publication date:
May 30, 1999
Publication type:
Ph.D. Dissertation
Citation:
Young, D. J. (1999). Microelectromechanical Devices and Fabrication Technologies for Radio-frequency Analog Signal Processing. United States: Electronics Research Laboratory, College of Engineering, University of California.