Autonomous swimming microrobots for biomedical applications and distributed sensing require locally controllable swimming mechanisms. This project aims to develop underwater, rotary electrostatic inchworm motors for artificial flagella. Our proposed design uses gap closing actuators with an angle arm design, similar to existing inchworm motors, to drive a central rotor, all fabricated with an SOI process. An artificial flagella is attached the rotor, converting the rotational motion into propulsion. Major challenges include efficient operation of electrostatic motors underwater and fabrication of artificial flagella.
Project ended: 08/01/2023