Microfluidics

Research that includes: 

  • Microvalves and fluidic flow control
  • Micropumps
  • Modeling of microfluidics
  • Particulate air monitoring
  • Flow Sensors
  • Capillary Pump Loop
  • Optoelectronic Transport & Tweezers

Subtractive Microfluidics in CMOS

Wei-Yang Weng
Alexander Di
Xiang Zhang
Ya-Chen (Justine) Tsai
Yan-Ting Hsiao
Jun-Chau Chien
2024

This paper introduces a microfluidics platform embedded within a silicon chip implemented in CMOS technology. The platform utilizes a one-step wet etching method to create fluidic channels by selectively removing CMOS back-end-of-line (BEOL) routing metals. We term our technique “subtractive” microfluidics, to complement those fabricated with additive manufacturing. Three types of structures are presented in a TSMC I80-nm CMOS chip: (1) passive microfluidics in the form of a micro-mixer and a 1: 64 splitter, (2) fluidic channels with embedded ion-sensitive field-effect transistors (ISFETs...

BPNX1042: Subtractive Microfluidics in CMOS (New Project)

Alexander Di
2025

Integrating microelectronics with microfluidics, especially those implemented in silicon-based CMOS technology, has driven the next generation of in vitro diagnostics. This CMOS/microfluidics platform offers close interfaces between electronics and biological samples and tight integration of readout circuits with multi-channel microfluidics, both of which are crucial factors in achieving enhanced sensitivity and detection throughput. Importantly, conventionally bulky benchtop instruments are now being transformed into millimeter-sized form factors at low cost, making the deployment for...

BPNX1038: CMOS Flow Deformability Cytometry (New Project)

Lily Li
Venkata Alapati
2025

Cell deformability is a label-free biomarker with great potential for studying various cellular processes and disease states. This mechanical property provides insights into changes in the cytoskeleton, nuclear structure, and overall cell state, demonstrating significant clinical potential in cancer research, immune responses, and stem cell sorting.

The current state-of-the-art method for detecting cell deformability combines inertial microfluidics for precise cell positioning with an ultra-high-speed camera to capture the degree of cell deformation under strong fluidic pressure...

BPN970: Rotary Inchworm Motor for Underwater Microrobot Propulsion

Mauricio J. Bustamante
2023

Autonomous swimming microrobots for biomedical applications and distributed sensing require locally controllable swimming mechanisms. This project aims to develop underwater, rotary electrostatic inchworm motors for artificial flagella. Our proposed design uses gap closing actuators with an angle arm design, similar to existing inchworm motors, to drive a central rotor, all fabricated with an SOI process. An artificial flagella is attached the rotor, converting the rotational motion into propulsion. Major challenges include efficient operation of electrostatic motors underwater and...

Gold NanoParticle Based Plasmonic Sensing for the Detection of SARS-CoV-2 Nucleocapsid Proteins

Kamyar Behrouzi
Liwei Lin
2022

An inexpensive virus detection scheme with high sensitivity and specificity is desirable for broad applications such as the COVID-19 virus. In this article, we introduce the localized surface plasmon resonance (LSPR) principle on the aggregation of antigen-coated...

NT21: Corona MEMS for Wide Study Area Air Particulate Monitoring

Beelee Chua
2005

(a) To miniaturize airborne particulates sizing and counting apparatus for ubiquitous deployment in air quality monitoring and epidemiological studies. (b) Multitudes of such devices can be deployed over a wide study area (such as downtown Sacramento) to monitor the air quality in situ and generate air particulates spatial and temporal maps. (c) To extend the applications of micro corona discharge device to micro ozone generator for biological sterilizing units, localized ESD control and other EHD-based fluid actuation applications.

Project end date: 02/06/06

APP68: Plastic Injection Molded Microneedles

Jonathan Fischer
2003

The objective of this research is to design, fabricate, characterize, and demonstrate injection-molded, plastic microneedles. Deep Reactive Ion Etching (DRIE) will be used to fabricate silicon die inserts and an “investment casting” technique used to define the inner bore (lumen) of the needle. These silicon die inserts will be incorporated into a standard plastic injection molding machine to transfer the micron-scale features from the silicon die to the plastic microneedles. It is expected to fabricate microneedles from polycarbonate, a premium plastic.

Project end...

LPL26: Floating planar nanogap capacitor for biosensor application

Ho-Kwan Kang
2003

The goal of this research is to develop the floating membrane nanogap capacitor for the dielectric spectroscopy exploration and the optical fluorescent observation of biomolecule.

Project end date: 08/01/03

DL16: Simulation of Micro-Fluidic Laser Heating Utilizing CFDRC

David Mun
2003

With the recent rapid advancements in computer technology, increasingly complex and powerful simulation programs are being developed that allow engineers and scientists in a variety of disciplines to develop extremely sophisticated and detailed models which simulate phenomena that might otherwise be difficult or impossible to verify experimentally or analytically. One specific application of this new technology is in the area of computerized fluid dynamic (CFD) simulations. CFD simulations can be utilized in a myriad of situations, such as modeling jet turbines, or determining...

RTH/JDK1: A Microfabricated Electrochemical Oxygen Generator for High-Density Cell Culture Arrays

William J. Holtz
Khoa Nguyen
2003

The goal of this project was to design, fabricate and characterize an electrochemical oxygen micro-generator suitable for use in high density miniature cell culture arrays.Arrays of miniature bioreactors were built and oxygen was supplied to them via electrochemical oxygen microgenerators.

Project end date: 08/20/03