Wireless, RF & Smart Dust

Research that includes:

  • Tuneable RF components: capacitors, inductors, transformers
  • RF microrelays
  • High frequency MEMS resonators: devices, structures, and processes

BPN416: AlN Piezo: Aluminum Nitride RF Filters

Jan Kuypers
2008

The goal of this project is to use piezoelectric Aluminum nitride (AlN) MEMS resonators to develop RF bandpass filters which can achieve multiple frequency operation with CMOS compatibility and high quality factor. These highly-integrated bandpass filter arrays with low power dissipation and small form factor will enable next-generation wireless communication systems.

Project end date: 02/07/08

BPN368: AlN Piezo: Aluminum Nitride Wideband RF Filters

Yun-Ju (Matilda) Lai
2008

The goal of this project is to use piezoelectric Aluminum Nitride (AlN) MEMS contour mode resonators to develop RF bandpass filters which can achieve multi-frequency per chip, CMOS compatibility and high quality factor Q. The highly-integrated bandpass filter arrays with low power dissipation and small form factor, will be promising technology to accomplish next-generation wireless communication systems.

Project end date: 07/30/08

BPN425: Aluminum Nitride-Based Actuators for Tunable Terahertz Electronics

Mona Jarrahi
2009

Fast growing applications of terahertz frequency in different areas such as material spectroscopy, medical imaging, radar systems, and security makes highly efficient, compact terahertz electronics highly on demand. However, the electromagnetic spectrum range at the corresponding frequencies (between 0.1 and 10 THz) has not been completely explored, due to the limitations of traditional microwave technology at long wavelengths and optical/laser sources at shorter wavelengths.

Project end date: 07/30/08

BPN415: Localization of Footsteps through Ground Vibrations

Travis Massey
2008

Target localization, the ability to determine the location of a target, is becoming increasingly attractive for purposes of security and automation. Vibrational localization is the method of sensing and calculating the target’s location using vibrations transmitted through the ground. This method of localization does not require a line of sight to the target, is not limited by dilution of precision, and can detect any moving object or person. Vibrational localization was formerly restricted by the noise performance and sensitivity limitations of accelerometers and other circuit...

BPN446: AlN Piezo: Monolithic Acoustic RF MEMS Modules

Jan H. Kuypers
2008

The goal of this research is the development of RF modules for wireless applications equipped with acoustic MEMS based filters and oscillators. Using CMOS compatible post-processes the acoustic components are to be fabricated directly on circuitry. In order to justify the increased complexity of such a module besides the advantage of size and cost, this will require a performance comparable to existing modules. Therefore the greatest challenges concerning the acoustic MEMS filters are lowering the insertion loss and increasing the bandwidth. The most important issue for oscillators...

BPN385: MiNaSIP 2.B.1: Piezoelectric/Electrode/Ambient Interaction in Contour-Mode Resonators

Marcelo B. Pisani
2008

Recent advancement in wireless communication requires substantial improvement in the performance of physical devices needed to implement ubiquitous, multi band, multi standard and reconfigurable radio frequency (RF) systems. Aluminum nitride contour-mode resonators have been proven as one of the most promising technologies for the implementation of fully-integrated single-chip transceivers, but remarkable efforts are still needed to be undertaken in order to improve the performance of RF MEMS filters, local oscillators and intermediate frequency (IF) filter stages. Investigations are...

BPN459: High Frequency Optoelectronic Oscillators (OEO)

John Wyrwas
Erwin K. Lau
2009

There has been recent interest in low noise oscillators in the V and W bands (40-111 GHz) for satellite data communication and RADAR. For these applications, close in to the carrier phase-noise performance is important. Several competing very-low-phase-noise oscillator technologies exist at lower microwave frequencies, including dielectric resonator oscillators (DROs), sapphire loaded cavity oscillators (SLCOs), surface acoustic wave (SAW) oscillators, and optical electronic oscillators (OEOs). All of these face difficulties in being extended up to the new bands of interest. OEOs,...

BPN436: Limits to Micromechanical Resonator Performance

Ilya Gurin
2009

This overall project aims to explore the ultimate performance (e.g., phase noise in oscillators, insertion loss in filters) attainable by micromechanical circuits as dictated by physical limitations.

Project end date: 08/07/09

KSJP28: Location Estimation Using RF Time of Flight

Steven Lanzisera
2009

An enabling technology for large scale sensor networks is the ability to determine a sensor node’s location after deployment. Some applications, such as inventory management, use sensors that move regularly, and this spatial information is crucial to the network's operation. A device to wirelessly measure the distance between two network nodes using an RF transceiver will be developed. The distance measurement is performed by calculating a cross correlation between a received and an expected signal. Methods for reducing the effects of noise, clock offset and multipath propagation...

BPN405: Manufacturing Repeatability of the Frequency and Q of Capacitive Micromechanical Disk Resonators

Yang Lin
2009

The long-term goal of this project is to devise methods for improving the untrimmed repeatability of micromechanical resonators so as to widen the breadth of applications addressable by such devices.

Project end date: 08/11/09