Physical Sensors & Devices

Research that includes:

  • Silicon MEMS actuators: comb, electro-thermal, and plastic deformation
  • Precision electronic sensing and measurements of capacitive, frequency, and coulombic MEMS variables
  • Structures and architectures for gyroscopes, accelerometers, micro strain gauges for direct application to rigid structures e.g., steel, and levitated MEMS

BPN951: Berkeley Low-cost Interplanetary Solar Sail (BLISS)

Alexander Alvara
Bhuvan M. Belur
2024

Space exploration often costs multiple millions of dollars for each exploratory mission to get a single piece of equipment into orbit. These missions usually return information in the form of scans or images or samples in the form of extracted material. This work proposes the manufacture and deployment of thousands of imaging capable solar sails systems with 10 gram payloads. Power generation is enabled through solar panels and batteries. Navigation is enabled through one square meter solar sails maneuvered by inchworm motors. Communications are enabled by laser transmitters and SPAD...

Lego-Like Reconfigurable Soft Haptic Array via Self-Healing Sensor/Actuator Modules

Peisheng He
Wenying Qiu
Yande Peng
Jong Ha Park
Qilong Cheng
David Bogy
Liwei Lin
2024

Soft haptic devices could enable unique applications in AR/VR, healthcare, and human-machine interface systems. Here, a versatile reconfigurable haptic system is proposed for different application scenarios at diverse anatomical locations and body shapes. Lego toys are the inspiration of the module concept where individual haptic modules can be cut, reconfigured, and reconnected as a new system in the ambient environment repeatedly.

Each module consists of the basic building block of flexible selfhealable ion-conducting and insulating layers....

A Non-Wolatile Surface Tension-Driven Electricochemical Liquid Metal Actuator

Xiaohang Chen
Zihan Wang
Wei Yue
Peisheng He
Liwei Lin
2024

We present a surface-tension driven electrochemical liquid metal (LM) actuator without the gas-producing sidereaction and capable of fabrication/operation in ambient air for practical applications. A hybrid supercapacitor is introduced to inhibit the common counter electrode side reactions, and the use of quasi-solid-state ionic hydrogel instead of liquid electrolyte further enables non-volatile operations. A 2×4 LM droplet array is demonstrated to actuate by a low driving voltage of 3.5 V for a maximum force of ~8.5 mN and a displacement of 0.56 mm in only 1.75 s. With the favorable...

BPN978: Hot Car Studies: Preventing Child Vehicular Heatstroke

Anthony Hon
2024

Young children trapped in a car without adult supervision may suffer life-threatening complications such as hyperthermia and heat stroke from extreme temperatures—which may rise to 130 °F in some cases. Our research aims to ascertain child presence within two to three minutes of unsupervised activity by probing increases in the levels of carbon dioxide emitted during human exhalation. Non-dispersive infrared (NDIR) sensors are employed to measure car carbon dioxide concentrations every two seconds. Specific numerical metrics are then derived from the data, and the presence of a child can...

YoungJun Kim

Graduate Student Researcher
Chemical and Biomolecular Engineering
Professor Roya Maboudian (Advisor)
Ph.D. 2025 (Anticipated)

visiting scholar in Chemical and Biomolecular Engineering department, University of California, Berkeley, USA.

PhD candidate in Chemical and Biomolecular Enginnering department, Yonsei University, Seoul, Korea

BS degree was obtained in Chemical and Biomolecular Engineering department, Yonsei University, Seoul, Korea

BPN991: Autolabeling for Large-Scale Detection Datasets

Philip L. Jacobson
2024

3D perception is an essential task for autonomous driving, and thus building the most accurate, computationally efficient, fast, and label efficient models is of great interest. In particular, label-efficient 3D detection is attractive as manual labeling of 3D LiDAR point clouds is both costly and time-consuming. Autolabeling is a machine learning paradigm in which a model is trained on a (small) set of labeled data before being used to generate predictions, known as pseudo-labels, on a large set of unlabeled data which can then be used to train an accurate downstream model with only a...

BPN956: Time-of-Flight Hardware for the Solar Probe ANalyzer for Ions (SPAN-Ion)

Omar Alkendi
Lydia Lee
2023

Monitoring and building our understanding of space weather is necessary to protect current and future astronauts and hardware, as well as further our understanding of its effects on atmospheric development and loss. This project has developed two radiation-hardened sensor frontends to measure the ion composition of the solar wind aboard the Solar Probe ANalyzer for Ions (SPAN-Ion). SPAN-Ion uses time-of-flight mass spectrometry to distinguish ions by their mass: charge ratios; the target architecture for future missions decreases mass and increases speed in exchange for several orders of...

BPN983: Materials and Devices for Bright UV LEDs

Shu Wang
2023

Wide band gap semiconductors are crucial for applications in power electronics, displays, solid-state lightning and many other fields. Due to their intrinsic structure and electronic properties, many wide band gap semiconductors can not be intentionally doped as desired, which limits their role in electronic and optoelectronic devices. In this project, we propose tuning the optoelectronic properties of wide band gap semiconductors electrically to enhance its luminescence efficiency.

Project ended: 02/07/2024

BPN965: Phonon Protected Superconducting Qubits

Mutasem Odeh
Kadircan Godeneli
2023

Superconducting quantum circuits are leading candidates for quantum computing. Scaling up these systems for practical applications will require compact coherent qubits that store the quantum states, high fidelity quantum gates that process them, and a scalable architecture that can accommodate complex error correction circuits. Meeting such requirements is mainly impeded by the unavoidable presence of two-level systems (TLS), which act as a decoherence source that results in the loss of quantum information via phonon emission. In this project, we engineer superconducting circuits...

Jun-Chau Chien

Professor
Electrical Engineering and Computer Sciences
Berkeley Sensor & Actuator Center (BSAC)

Jun-Chau Chien is an Assistant Professor of Electrical Engineering and Computer Sciences at the University of California, Berkeley, and a Co-Director of the Berkeley Sensor & Actuator Center (BSAC). His research focuses on analog/mixed-signal integrated circuits, bioelectronics, and RF/mmWave high-speed ICs. He is also interested in biosensor designs, molecular engineering, and techniques to couple semiconductor technologies with advanced biotechnologies for new platform development.

Prior to joining BSAC, Professor Chien was an Assistant Professor at National...