Package, Process & Microassembly

Research that includes:

  • Low temperature MEMS-on-CMOS Silicon-Germanium process for adding MEMS to finished CMOS wafers or dice
  • Silicon Carbide process for adverse environment MEMS and high frequency RF resonators
  • Localized bonding: eutectic, fusion, solder, laser, inductive, rapid thermal processing, and ultrasonic; suitable for device level or wafer level packaging or sealing applications to plastic, glass, silicon and Bio materials, including liquid encapsulation
  • Fluidic microassembly for post-process combining of dissimilarly processed microdevices
  • Carbon nanotube and silicon nanowire directional growth in post-process, low ambient temperature environments
  • Stiction mitigation for MEMS

RM7/RTH: Dedicated SiC MEMS LPCVD Reactor for Access through the DARPA MEMS Exchange Program

Christopher S. Roper
2007

This project seeks to make Silicon Carbide thin films available to MEMS researchers and designers. A process developed in the Maboudian Lab at UC Berkeley which currently accommodates 2-inch wafers will be scaled up to accommodate 4- and 6-inch wafers. High quality poly-crystalline 3C-SiC films deposited at reasonable growth rates, with controlled residual stress, controlled strain gradient, controlled resistivity, and high uniformity will be sought. Once films with high overall quality and repeatability are grown the process will be released to the MEMS community.

...

APP79: MEMS Biopolymer: Micro Plastic Injection Molded Fluidic Chip with Thermally Actuated Hydrogel Valves

Emil J. Geiger
2008

The goal of this project is to develop a polymer microfluidic system to test system level performance. The chip will be plastic injection molded with integrated fluidic interconnects. Polymer film with patterned metal traces will be used to enclose the channel. The traces will allow simple control elements such as heaters and electrodes to be integrated into the chip. Previous work at UC Berkeley has developed a thermal sensitive hydrogel valve that can be lithographically patterned. This valve will be incorporated into the chip and actuated via on-chip heaters. A test assay will be...

BPN307: CMOS Integrated Nanowires/Nanotubes (CMOS-Inn)

Yingqi Jiang
2008

The goal of this project is to develop technologies for hierarchical assembly of nano structures (silicon nanowires (SNWs) and carbon nanotubes (CNTs)) with built-in CMOS interface circuits by utilizing localized and selective IC-compatible synthesis, for a fully integrated nano-sensing system. Ultimately, both the nano-sensor element and the signal processing circuits should be fabricated on the same device substrate. The SNWs/CNTs will be synthesized afterwards locally and selectively using MEMS resistive heaters. In order to develop the integration process, we plan to use the 0.35...

BPN352: Micro/Nano Fluidic Interconnector

SangHoon Lee
2008

In this project, near-field electrospinning (NFES) is applied for site-specific, chip-to-chip micro/nano fluidic interconnectors. This fabrication/packaging technology enables off-chip fluidic transportations through fluidic channels of 50nm~5μm in diameter. Near-field electrospinning has the position controllability better than 10μm in contrast to the random deposition of conventional electrospinning.

Project end date: 09/03/08

BPN330: Non-magnetic Micro Heater

Jui-Ming (Ryan) Yang
2009

Non-magnetic heaters are desirable for systems sensitive magnetic fields, such as micromachined gyroscopes using spin-polarized nuclei. The short-term objective of this project is to design and fabricate MEMS resistive heaters that will generate minimum magnetic field while under resistive heating to provide the heating source for the micromachined gyroscope using spin-polarized nuclei. The long-term goal of the project is the integration of the non-magnetic heater with other components to accomplish micromachined gyroscope using spin-polarized nuclei within the magnetic shielding...

BPN329: Micro Magnetic Shielded Packaging

Armon Mahajerin
Woon-Kyung (Kevin) Choi
2008

The long-term goal of the project is to create the magnetic shielding packaging for a micro-machined gyroscope using spin-polarized nuclei. The shield is to have an attenuation above 10 to the 6 and a small size of approximately one cubic centimeter volume while allowing signal transmission lines to communicate with outside world. This is accomplished with multiple layers of high permeability material such as nickel-iron alloy. Current work focuses on new methods of fabricating shielding devices and the exploration of additional shielding materials.

Project end date:...

BPN414: Disposable Microsyringe for Single Dose Vaccine Delivery

Zachary Lee
2008

With the development of transdermal drug delivery methods there is a growing potential for creating safer and more efficient means of vaccine delivery and improving access for children in remote areas of developing countries. Problems with conventional needle delivery in areas with limited supplies include the risk of blood borne pathogen transmission through accidental needle sticks, wastage and contamination during the reconstitution process, storage and cold chain maintenance. Microneedle based drug delivery systems consisting of an array of pointed, out-of-plane microneedles have...

BPN382: 2D Individually-Addressable Nanowire Arrays

Peter C. Yang
2009

Semiconductor nanowires have recently stimulated great interest due to their attractive and potentially very useful properties, originating from features such as carrier confinement, high surface to volume ratio, and morphology/crystal structure unique to their nanoscale dimension and bottom-up growth process. These properties lead to many possible applications such as room temperature ballistic conductors for high-frequency/high-powered integrated circuits, UV/visible/IR nanolasers and waveguides, as well as sensors for chemical and biological agents. The systematic assembly and...

BPN351: MEMS-Based Magnetic Probe Microscopy

Gerardo Jaramillo
2009

A scanning-probe magnetic microscopy based on a high resolution magnetic tunnel junction (MTJ) sensor is under construction. MTJ sensors are highly sensitive magnetic field sensors but suffer from large 1/f noise. We have developed a new approach for reducing the 1/f noise in an MTJ sensor by using a MEMS resonator to mechanically modulate the magnetic field signal to a high frequency. MEMS actuators are uniquely suited to achieve both precise, micron-scale control of the average sample-to-sensor separation and to AC modulate the separation and MTJ signal at a very high frequency (...

BPN356: MEMS Microfabrication and Research Services at the Adriatic Research Institute

Veljko Milanovic
2009

Adriatic Research Institute (ARI) is a California non-profit corporation in Berkeley, CA. Through membership in the Berkeley Microfabrication Laboratory Affiliates Program since 2001, we have enjoyed year-round access to the 4" and 6" CMOS and MEMS fabrication facility on campus. Our own research projects utilize a variety of SOI-based and other MEMS processes to fabricate fast two-axis micromirror scanners, ultra-light mirrors, low-stress membranes, nanowires, etc. ARI also has an extensively equipped electronics and MEMS design and test facility. All of these facilities, our...