The output of nanoresonators is often in the form of small currents, in the range of nanoamperes. We will investigate methods to improve the extraction and amplification of these small signals, in the presence of feedthrough and other parasitic effects. With optimized sensing circuits, one can also investigate a variety of ideas utilizing nanoresonator structures. Currently on our list are: 1. Novel methods to minimize feedthrough in nanoresonator structures. 2. HF filters from mechanically-coupled nanoresonators 3. Demonstration of an associative memory from variable coupling of nanoresonators.
Project end date: 02/10/04