Wireless, RF & Smart Dust

Research that includes:

  • Tuneable RF components: capacitors, inductors, transformers
  • RF microrelays
  • High frequency MEMS resonators: devices, structures, and processes

BPNX1015: Ultra-Light Antennas via Charge Programmed Deposition Additive Manufacturing

Ju Young Park
2024

Multi-material printing employing charge-programmed material is utilized for phase array antenna fabrication, showcasing an ultra-lightweight RF phase array. Significant weight reduction is achieved through selective dielectric material printing. Our approach enables complex electronic device fabrication in one step, utilizing a mosaic of surface charge regions to deposit functional materials with precision. We demonstrate the inherently complex manufacturing process via homogeneous diffusion and fluid dynamics control.

Project is currently...

BPN859: High Frequency Oscillator Characterization

Qiutong Jin
Kevin H. Zheng
Xintian Liu
Kieran Peleaux
QianYi Xie
2024

This project aims to study and understand fundamental mechanisms that govern phase noise, aging, thermal stability, and acceleration stability in high frequency micromechanical resonator oscillators.

Project currently funded by: Member Fees

Project temporarily suspended as of 09/06/2024

BPN987: Single-chip µV Precision ADC for SCµM-V

Yu-Chi Lin
Daniel Lovell
Ali M. Niknejad
Kristofer S.J. Pister
2024

We are developing a millimeter-square low-power wireless ADC capable of detecting and transmitting microvolt-level signals. This ADC offers potential for high-precision measurements in various domains, including biomedical, automotive, and IoT. The immediate objective of this project is to design a concurrent TMS-EEG-MRI system – a temporal and spatial imaging method that may unveil the intricacies of brain circuits. The high-precision ADC enables acquisition of EEG signals down to 10µV, while the wireless communication remains robust to heating and disturbance issues induced by MRI...

Resoswitch Squegging Control by Compact Model-Assisted Impact Electrode Design

Kevin H. Zheng
Qiutong Jin
Clark T.-C. Nguyen
2024

This paper demonstrates, via a novel compact model and experiments, that squegging in micromechanical resonant electrical switches (resoswitches) [1] is controllable via impact electrode design. The model captures the nonlinear dynamics of impact contact and predicts squegging. Unlike other numeric and finite-element (FEM)-based models, this physical parameter-based model has no convergence difficulties when simulating impact, accurately captures squegging, and runs within any circuit simulator with up to 100× simulation time improvement compared to commercial software....

BPNX1004: Low Noise Electrochemical Aptamer-Based Sensing Device

Ya-Chen (Justine) Tsai
2024

The Electrochemical Aptamer-based (E-AB) sensors provide continuous and real-time monitoring of specific target molecules, including proteins, antibiotics, neurotransmitters, and more. Due to the cost-effectiveness compared to enzyme sensing assays, E-AB platforms hold significant promise for point-of-care devices and precision medicine. However, sensitivity remains a challenge, particularly in the complicated environment, such as blood and serum. While research has achieved a noise level in the picoampere range, enhancing sensitivity is crucial for detecting trace amounts of certain...

BPNX1017: 3D Printing of Functional Materials

Zhen Wang
2024

3D printing enables the fabrication of 3D functional materials with complex structures associated to various functionalities. Developing 3D printing resins with different properties promises to fabricate a myriad of complex functional devices with e.g., self-sensing, actuation, and structural elements assembled in a designed 3D layout. In this project, we explore the achievable property space and the material-performance correlation of 3D printing by designing a series of photo-curable resins. We unveil how the functional groups of the resins synergistically impact the...

BPN953: Long-Term Drift of MEMS-Based Oscillators

Xintian Liu
Kevin H. Zheng
Qiutong Jin
2024

This project seeks to characterize and de-mystify mechanisms behind long-term drift in MEMS-based oscillators, including ones employing various sustaining amplifiers and referenced to resonators constructed in a variety of materials, including silicon, polysilicon, AlN, diamond, and ruthenium. A measurement apparatus that suppresses unwanted sources of drift, e.g., temperature, to better focus on resonator and oscillator long-term drift will be instrumental to success and will likely entail the use of double or triple ovens, as well as environment resistant circuit design.

...

BPN990: Anti-Drone Radar-Guided Micromissiles

Titan Yuan
Carson Spoo
Cedric Murphy
Jenna Dickman
Asa Garner
Eric Yang
2024

Since drones can be flown remotely or autonomously and can navigate dangerous environments without any risk to human operators, they are attractive for military applications, including surveillance, reconnaissance, and combat missions. At the same time, enemy drones pose a growing serious threat to civilians and soldiers. Current anti-drone warfare is either inaccurate, expensive, or large in size, so this project aims to build a low-cost, crayon-sized radar-guided microrocket to target drones up to 100 m away.

Project currently funded by: Membership Fees

BPN803: Single Chip Mote

Daniel Lovell
Titan Yuan
Yu-Chi Lin
2024

The Single-Chip Micro Mote (SCµM) is an integrated wireless sensor node that pushes the boundaries of system-on-chip integration. A single mote is intended to be fully self-contained and functional when supplied only with a power source, and the on-chip crystal-free radio is designed to comply with BLE and IEEE 802.15.4 wireless personal area network standards. In previous work, SCµM-3C was demonstrated to join an 802.15.4 mesh network running OpenWSN, transmit BLE beacon packets to a cell phone, and perform RF temperature compensation via both initial calibration and...

BPNX1008: Dual-Path Noise Elimination (DuNE): A Noise-Cancellation Technique for Aptamer-Based Electrochemical Sensors

Wei Foo
2024

We have previously demonstrated electrochemical circuits for measuring the concentration of various biomolecules and drugs using structure-switching aptamers. Structure-switching aptamers are single-stranded nucleic acids that can be sequenced to exhibit conformational changes when bound to specific biomolecules. By conjugating aptamers with a redox reporter, voltammetry or amperometry-based measurements can be applied and signals in the nano to pico-amp scale can be captured using transimpedance amplifiers (TIA). Because the signals of interest are very small, noise-cancellation...