Brain-machine interfaces provide an artificial conduit to send information to and from the brain, and modulate activity in the brain. These systems have shown great promise in clinical, scientific, and human-computer interaction contexts, but the low reward/risk ratio of today’s invasive neural interfaces has limited their use to an extremely niche clinical patient population. It has been shown that ultrasonic backscatter communication can enable the sensing and stimulation of neural activity with extremely small wireless implants, which can both improve performance and reduce risk. This project will develop a neural interface system which extends this technique to wirelessly communicate with multiple sensors in the brain.
Project end date: 01/29/18