BPN862: 2D Semiconductor Transistors with 1-Nanometer Gate Length

Abstract: 

MoS2 transistors with a 1-nm physical gate length using a single-walled carbon nanotube as the gate electrode are demonstrated. These devices exhibit near ideal subthreshold swing ~65 millivolts per decade and an On/Off current ratio ~10^6. This work provides new insight into the ultimate scaling of gate lengths for a FET by surpassing the 5 nm limit often associated with Si technology. Furthermore, the impact of using gate electrodes with limited density of states on the characteristics of nanoscale transistors is studied. Current work involves self- aligned doping of the extension regions in the device to improve On currents.

Project end date: 08/07/18

Author: 
Sujay B. Desai
Publication date: 
January 29, 2018
Publication type: 
BSAC Project Materials (Final/Archive)
Citation: 
PREPUBLICATION DATA - ©University of California 2018

*Only registered BSAC Industrial Members may view project materials & publications. Click here to request member-only access.