Sepsis is a life-threatening condition both in civilian and military medical scenarios. Patients with sepsis usually exhibit a vigorous systemic release of cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor (TNF) into serum. The ability to monitor relative cytokine levels continuously at fast time scales (tens of minutes) could open the door to closed-loop, patient-specific sepsis management therapies. The current methods of cytokine detection take hours and cost thousands of dollars because the physiological concentration is so low around femtomolar. At such low concentrations, the limiting factor becomes mass transport instead of binding kinetics, due to increased diffusion length from bulk solution to sensor surface. We present a method, based on nanofabrication and ion concentration polarization (ICP) which enriches analytes using only a DC power supply.
Project end date: 05/23/19