BPN732: The Role of Erythrocyte Size and Shape in Microchannel Fluid Dynamics

Abstract: 

The unique properties of blood flow in microchannels has been studied for nearly a century; much of the observed blood-specific dynamics is attributed to the biconcave shape of red blood cells. However, for almost twice as long biologists have observed and characterized the differences in size and shape of red blood cells among vertebrates. With a few exceptions, mammals share the denucleated biconcave shape of erythrocytes but vary in size; oviparous vertebrates have nucleated ovoid red blood cells with size variations of a full order of magnitude. We utilize micro-PIV and pressure drop measurements to analyze blood flow of vertebrate species in microchannels, with a focus on understanding how cell size and shape alter the cell-free layer and velocity profile of whole blood. The results offer insight into the Fahraeus-Lindqvist effect and the selection of animal blood for the design and evaluation of biological microfluidic devices.

Project end date: 01/31/17

Author: 
Karthik Prasad
Publication date: 
January 31, 2017
Publication type: 
BSAC Project Materials (Final/Archive)
Citation: 
PREPUBLICATION DATA - ©University of California 2017

*Only registered BSAC Industrial Members may view project materials & publications. Click here to request member-only access.