BPN571: Implantable Microengineered Neural Interfaces for Studying and Controlling Insects

Abstract: 

Our goal is to control the flight of an insect by appropriating its sensory systems. Although significant funding has gone in to developing micro air vehicles (MAVs, wingspan <15cm), flying insects still significantly outperform the most sophisticated flying robots in efficiency, flight time, stability, and maneuverability. The restrictions that such a small spatial scale places on the amount of energy that can be stored on-board and on actuator efficiency means that this gap is expected to continue for a number of years to come. We are therefore pursuing a novel MAV design that uses an actual flying insect. We strive to produce small insect backpacks capable of receiving commands remotely and providing power to a combination of neural and optical stimulators. The patterns of stimulation will allow us to trick the insects motor-sensory system into responding to fictitious self-movements. We aim to use these 'ghost' stimuli to remotely control the insect's flight, while at the same time capitalizing on their remarkable natural flying abilities. The project has advanced to testing devices in free- flight and optimizing the stimulation parameters.

Project end date: 01/25/16

Author: 
Travis L. Massey
Publication date: 
August 27, 2015
Publication type: 
BSAC Project Materials (Final/Archive)
Citation: 
PREPUBLICATION DATA - ©University of California 2015

*Only registered BSAC Industrial Members may view project materials & publications. Click here to request member-only access.