BPN787: 3D-Printed Molds for Rapid Assembly of PDMS-based Microfluidic Devices

Abstract: 

In this work, we demonstrate the use of 3D-printed molds for fabricating PDMS-based microfluidic devices. 3D Printing allows for the fabrication of molds that are not monolithic in structure, and therefore represents a significant improvement over the capabilities of standard soft lithography; with 3D-printed molds, we can fabricate most features commonly generated by soft lithography in addition to formerly difficult features such as domes and variable-sized channels. Furthermore, we demonstrate that this technique can be used to generate microfluidic devices molded on both sides - which allows for single-step generation of features like vias, thin membranes, and membrane valves - and can be easily adapted to generate multi-layer microfluidic structures.

Project end date: 08/23/16

Author: 
Casey C. Glick
Publication date: 
February 5, 2016
Publication type: 
BSAC Project Materials (Final/Archive)
Citation: 
PREPUBLICATION DATA - ©University of California 2016

*Only registered BSAC Industrial Members may view project materials & publications. Click here to request member-only access.