Wireless, RF & Smart Dust

Research that includes:

  • Tuneable RF components: capacitors, inductors, transformers
  • RF microrelays
  • High frequency MEMS resonators: devices, structures, and processes

BPN693: HEaTS: Thermally Stable Aluminum Nitride Lamb Wave Resonators for Harsh Environment Applications

Jie Zou
Chih-Ming Lin
2013

This project aims at developing high quality factor (Q), large coupling coeffecient (k2) aluminum nitride (AlN) Lamb wave resonators (LWRs) exhibiting low loss and thermally stable performance for wireless communications (e.g. oscillators or filters) in harsh environments. Current technology using thin AlN membrane structures have proved to enable a high phase velocity, low velocity dispersion of the Lamb wave employing the lowest order symmetric mode (S0), thus ensures a high frequency and offers robust designs with low sensitivity to technological tolerances. However, these devices...

BPN434: A Micromechanical RF Channelizer

Mehmet Akgul
2014

Vibrating mechanical tank components, such as crystal and SAW resonators, are widely used for frequency selection in communication systems because of their high Q and exceptional stability. However, being off-chip components, these devices pose an important bottleneck against the ultimate miniaturization and performance of wireless transceivers. This project aims to explore the use of capacitively transduced micromechanical circuits to realize micromechanical mixer-filters with reconfigurable attributes. With their substantial size, cost and performance advantages, these devices can...

BPN766: Active Q-Control for Improved Insertion Loss Micromechanical Filters

Thura Lin Naing
Tristan Rocheleau
2014

This project aims to develop channel-selecting Micromechanical filters with controllable bandwidth using resonators wired in closed-loop feedback with ASIC amplifiers.

Project end date: 02/03/15

BPN596: Smart Fence and Other Wireless Sensing Applications for Critical Industrial Environments

Fabien J. Chraim
2014

Following the successful showcase of the Smart Fence technology, this project aims at using MEMS and Optical Sensors in combination with Low-Power radios to implement industrial wireless sensing applications. Using inertial sensors, valve position monitoring and machine vibration sensing are added for safeguarding both personnel and equipment. Finally, gas leak detection and localization is implemented and tested using IR combustible gas sensors. This project is concerned both with the COTS-based hardware and software behind each application.

Project end date: 02/...

BPN713: Ring GINA: Highly Miniaturized Ring-Format Wearable Mote

Joseph Greenspun
David Burnett
2015

Computer input devices such as mice and keyboards have remained largely unchanged since the dawn of the personal computer. The Ring GINA platform is capable of sensing and interpreting a user’s hand and finger movements to emulate and enhance the functions of these standard input devices. A wearable platform frees the user from the need to know hand position relative to a keyboard or mouse, and grants the ability to perform gestures in open space or on any surface. Here, a method is presented that utilizes these rings as a text input system. In moving forward, efforts are being...

BPN574: On-Chip Micro-Inductor

Kisik Koh
Chen Yang
2015

On-chip inductors are key passive elements to high-power and radio frequency (RF) integrated circuits (ICs). This project aims to realize super-compact on-chip micro-inductor with magnetic media for high-power and RF IC's, including: 1) to explore low-loss, high resonance frequency magnetic material for inductor application; 2) to develop magnetic-material integration process; 3) to realize the super-compact magnetic-embedded inductor. The long-term objectives for this project are to resolve the current problem of lacking compact-size high-performance on-chip inductors, and then...

BPN707: Automated Passband Tuning of High-Order Microelectromechanical Filters

Henry G. Barrow
2015

This project aims to develop multi-resonator micromechanical electronic filters for use in communication systems requiring bandpass filters with sharp rolloffs and large stopband rejections. A complete analysis of the design, fabrication and testing of filters comprised of 2-8 micromechanical resonators coupled by flexural mode springs will establish a greater understanding this exciting MEMS device. In addition, the implementation of an automated tuning scheme will provide complete corrective control over the filter’s passband by negating the effects of fabrication error....

BPN682: Strong I/O Coupled High-Q Micromechanical Filters

Robert A. Schneider
2015

This project improves the Q-factors of piezoelectric aluminum nitride (AlN) resonators by detaching their electrodes and suspending them at close distance. These devices are then used to make high-Q filters. "Capacitive-piezo" transduction, as it is called, allows for simultaneous low motional impedance (10-1000 Ohm) and high-Q (Q>8,800) performance for AlN resonators at VHF and UHF frequencies. The main advantage of these devices over capacitive resonators is their much stronger electromechanical coupling, e.g., Cx/C0>1.0%, enabling kt^2*Q figures of merit exceeding those of...

BPN709: Tunable & Switchable Micromechanical RF Filters

Lingqi Wu
2015

This project aims to explore the use of on-chip capacitively transduced micromechanical resonators to realize RF filters with substantial size and performance advantages. With their extremely high quality factor in UHF range and strong coupling coefficient enabled by nanometer electrode-to-resonator gap spacings, capacitive-gap transduced micromechanical resonators should be able to realize reconfigurable RF channel select filters for future cognitive radio applications.

Project end date: 08/25/15

BPN359: Micromechanical Disk Resonator-Based Oscillators

Thura Lin Naing
Tristan Rocheleau
2015

This project aims to build and test micromechanical-based frequency synthesizer components that meet or exceed the requirements of the GSM standard. Towards these goals, the project investigates short and long-term stability of MEMS-based oscillators, particularly, phase noise and acceleration sensitivity. In addition to providing a highly accurate, on-chip frequency reference, a fully-integrated oscillator can achieve greater stability (particularly acceleration sensitivity) and far less power consumption than any comparable off-chip oscillator. In the process of achieving a fully-...