Physical Sensors & Devices

Research that includes:

  • Silicon MEMS actuators: comb, electro-thermal, and plastic deformation
  • Precision electronic sensing and measurements of capacitive, frequency, and coulombic MEMS variables
  • Structures and architectures for gyroscopes, accelerometers, micro strain gauges for direct application to rigid structures e.g., steel, and levitated MEMS

BPN735: Walking Silicon Microrobots

Yichen Liu
Alexander Alvara
Daniel Lovell
Dang Le
2024

Our goal is to build a family of autonomous silicon robotic insects with actuating, computing, and power capabilities integrated. A silicon-on-insulator (SOI) device is used to house all three components. These robots use electrostatic actuators driving silicon linkages, all fabricated in the device layer of the wafer. By using electrostatic actuation, these actuator linkage systems have the advantage of being low power compared to other methods of actuation on microscale granting robot autonomy through low-power energy harvesting. Computation and communication are carried out with Single...

BPN992: Sensing and Actuation Applications Using Lithium Niobate PMUTs

Wei Yue
Megan Teng
2024

Sensing, actuation and imaging applications based on ultrasounds could expand to many applications by means of miniaturization and low power consumption via MEMS fabrication technologies. Piezoelectric micromachined ultrasound transducers (PMUTs) with thin film designs have emerged as key commercial products but current state-of-art PMUTs are limited by the acoustic power/pressure for applications within a limited range by using AlN as the piezoelectrical material due to its process compatibility with microelectronics. One BSAC industrial member has developed a process to make PMUT...

BPN983: Materials and Devices for Bright UV LEDs

Shu Wang
2023

Wide band gap semiconductors are crucial for applications in power electronics, displays, solid-state lightning and many other fields. Due to their intrinsic structure and electronic properties, many wide band gap semiconductors can not be intentionally doped as desired, which limits their role in electronic and optoelectronic devices. In this project, we propose tuning the optoelectronic properties of wide band gap semiconductors electrically to enhance its luminescence efficiency.

Project ended: 02/07/2024

BPNX1003: Copolymer-Template Fabrication of Metal Oxides with Tailored Porosity toward High-performance Gas Sensors (New Project)

HyoJun Min
Yaprak Ozbakir
Carlo Carraro
Tzu Chiao Wei
2024

Metal oxide semiconductors (MOX) such as SnO2 are widely used in chemiresistive gas sensors due to their high chemical and thermal stability, low cost, and tunable chemical and electronic properties. The introduction of porosity to the MOX structure enhances their gas-sensing properties by increasing the surface area available for interactions with gas molecules. This higher surface area enhances the sensor's sensitivity by providing more active sites for gas adsorption. Also, a faster response/recovery time can be obtained as gas molecules can more quickly interact with a...

BPNX1002: Atomically Dispersed Metals on Graphene Oxide for High-Performance Electrochemical Biosensors (New Project)

HyoJun Min
Yaprak Ozbakir
Carlo Carraro
2024

Atomically dispersed metal catalysts have garnered considerable attention due to their unique properties and superior catalytic activity. The isolation of metal atoms on the matrix offers enhanced catalytic performance even with a small content of noble metal loading. This class of materials provides exciting opportunities to improve the performance of chemical and biochemical sensors. In this work, we have selected Pd as the catalysts because of its high catalytic activity and graphene oxide as the matrix because of its high electrical conductivity and unique electrochemical properties....

BPN978: Hot Car Studies: Preventing Child Vehicular Heatstroke

Anthony Hon
2024

Young children trapped in a car without adult supervision may suffer life-threatening complications such as hyperthermia and heat stroke from extreme temperatures—which may rise to 130 °F in some cases. Our research aims to ascertain child presence within two to three minutes of unsupervised activity by probing increases in the levels of carbon dioxide emitted during human exhalation. Non-dispersive infrared (NDIR) sensors are employed to measure car carbon dioxide concentrations every two seconds. Specific numerical metrics are then derived from the data, and the presence of a child can...

BPN991: Autolabeling for Large-Scale Detection Datasets

Philip L. Jacobson
2024

3D perception is an essential task for autonomous driving, and thus building the most accurate, computationally efficient, fast, and label efficient models is of great interest. In particular, label-efficient 3D detection is attractive as manual labeling of 3D LiDAR point clouds is both costly and time-consuming. Autolabeling is a machine learning paradigm in which a model is trained on a (small) set of labeled data before being used to generate predictions, known as pseudo-labels, on a large set of unlabeled data which can then be used to train an accurate downstream model with only a...

BPN941: Ultrasound-Induced Haptic Interface

Fan Xia
Wei Yue
2024

The next big thing, AR/VR, requires an immersive Human Machine Interface (HMI) in addition to visual and sound stimuli. Although skin is the biggest organ in the human body, very few efforts compared to visual and auditory senses have been done to develop a “sense of touch”. The mechanical stimulus to generate the touch sense by the embedded mechanoreceptors in the skin at different depths has been created in many ways as vibratory actuators, microneedles, etc. In this project, we are investigating to create haptic interface via radiation force generated by piezoelectric...

BPN965: Phonon Protected Superconducting Qubits

Mutasem Odeh
Kadircan Godeneli
2023

Superconducting quantum circuits are leading candidates for quantum computing. Scaling up these systems for practical applications will require compact coherent qubits that store the quantum states, high fidelity quantum gates that process them, and a scalable architecture that can accommodate complex error correction circuits. Meeting such requirements is mainly impeded by the unavoidable presence of two-level systems (TLS), which act as a decoherence source that results in the loss of quantum information via phonon emission. In this project, we engineer superconducting circuits...

Jun-Chau Chien

Professor
Electrical Engineering and Computer Sciences
Berkeley Sensor & Actuator Center (BSAC)

Jun-Chau Chien is an Assistant Professor of Electrical Engineering and Computer Sciences at the University of California, Berkeley, and a Co-Director of the Berkeley Sensor & Actuator Center (BSAC). His research focuses on analog/mixed-signal integrated circuits, bioelectronics, and RF/mmWave high-speed ICs. He is also interested in biosensor designs, molecular engineering, and techniques to couple semiconductor technologies with advanced biotechnologies for new platform development.

Prior to joining BSAC, Professor Chien was an Assistant Professor at National...