Physical Sensors & Devices

Research that includes:

  • Silicon MEMS actuators: comb, electro-thermal, and plastic deformation
  • Precision electronic sensing and measurements of capacitive, frequency, and coulombic MEMS variables
  • Structures and architectures for gyroscopes, accelerometers, micro strain gauges for direct application to rigid structures e.g., steel, and levitated MEMS

BPN483: High Z Materials for Nuclear Detection

Mitchell H. Kline
Igor I. Izyumin
2009

Homeland security requires development of cost-effective nuclear detection capability to distinguish threats from non- threats. High atomic number (Z) semiconductor devices with high efficiency, sufficient energy resolution, and room temperature operation offer the potential to meet this objective rapidly, reliably, and inexpensively, but have been challenging to realize, despite significant efforts spanning 30 years. To achieve this important goal, there is strong consensus that fundamental limitations on charge collection in high Z materials must be understood, material quality...

BPN386: CMOS-Integrated Nanowire-Based Molecular and Gas Sensors

Karl Skucha
2010

This project first aims to develop a process flow to integrate silicon nanowires onto a CMOS substrate, both via and top-down and bottom-up processes. Then, by carefully designing the underlying circuitry and functionalizing the nanowire transducers, we hope to demonstrate a fully functional integrated sensing platform for various molecular agents and/or gases. The overall goal and application is to create an easy-to-use CMOS-based sensing system for low-cost portable applications.

Project end date: 02/04/10

BPN357: Parametrically-Amplified MEMS Magnetometer

Matthew J. Thompson
2010

The focus of this project is on developing parametric MEMS resonators for application to gyroscopes, magnetometers, and RF MEMS filters. Optical parametric oscillators and microwave parametric amplifiers are widely utilized but their current MEMS counterparts are largely an academic curiosity. Parametric MEMS resonators have a number of advantages over the current state-of-the-art in MEMS resonator technology. First, they allow direct mechanical amplification of the sensor input, reducing the requirement for electronic amplification and allowing a corresponding reduction in power...

BPN418: MEMS Poly/Nano: Polymer Coated Cantilevers for Infrared Heat Sensing

Clinton G. Warren
2010

A polymer-polysilicon cantilever bimorph device is to be utilized as a thermal infrared detector. Third generation prototypes were designed, fabricated, and are being tested. These device utilize a capacitive readout scheme, a double-beam design in order to eliminate the effect of residual stress in the polymer layer, and a nitride stopper layer for reduced sticking and pull-in. Devices are characterized using optical and thermal methods. Future goals include detailed characterization of the current prototypes, analytical model correlation, low-pressure testing, geometric...

BPN563: LIDAR (Light Detection And Ranging) with MEMS

Erwin K. Lau
2010

Two-dimensional imaging is limited in that it cannot provide depth perception. One can view objects in the distance, but cannot determine how far away these images are. Three-dimensional imaging, such as RADAR, can accomplish this, but radio wavelengths are too long to provide detailed resolution. LIght Detection And Ranging (LIDAR) uses optical wavelengths, providing easily four orders of magnitude better resolution, allowing the imaging of sub-millimeter detail or better. However, the conventional LIDAR method employs short optical pulses that need high-speed, 2-D photodetection,...

BPN590: QES: MEMS Polymer Infrared Sensor Array

Nuo Zhang
2011

This project's goal is to design, fabricate and test a MEMS, polymer-based, un-cooled thermal infrared (IR) sensor array. The sensors will be based on polymer-ceramic bimorph (two-layer) beams. Absorption of the incident IR radiation by each bimorph cantilever beam raises its temperature, resulting in proportional deflection due to the mismatch in thermal expansion of the two bimorph materials.

Project end date: 08/16/11

BPN593: Design and Modeling of Liquid Bearing Electrostatic Micromotor

Zhaoyi Kang
2011

This project aims to design and develop an actuation system based on liquid bearing micro-rotary stage (micro-motor). The liquid bearing is essentially a small volume of fluid confined between the rotor and stator through Teflon surface coatings, which is capable of supporting both static and shock loads with reduced mechanical vibrations. The rotor is actuated by the three-phase electrostatic torque between the rotor and stator electrodes. We will develop analytical and numerical model to analyze and optimize the stationary and transient rotary of the micro-motor. Another major task...

BPN604: Readout Circuits for AlN Resonant Sensors

Igor I. Izyumin
2011

Resonant MEMS sensors are commonly used for sensing pressure, mass, force, strain, and acceleration. Resonant readout is particularly attractive for piezoelectric sensors, since it is the only method that allows measurement of static or slowly-varying quantities. Fundamentally, resonant readout relies on a fixed dependence between the quantity to be measured and the resonant frequency of a mechanical structure. However, the resonant frequency is generally also a strong function of several unwanted variables, including temperature, fabrication variability, and packaging stress. One...

BPN582: HEaTS: Structurally Multifunctional Actuation and Readout Techniques for MEMS (SMART MEMS)

Kamran Shavezipur
Jamie Young
2011

The goal of this project is to develop multifunctional sensors for harsh environment where using one device different physical parameters can be measured. The main focus for the current phase is on a multifunctional temperature-pressure sensor that simultaneously measures both pressure and temperature using a smart structure and capacitive readout.

Project end date: 01/26/12

BPN605: Thin Film MEMS Pressure Sensor for Detection of Pressure Fluctuations in a Rat Brain due to Blast Injury

David G. Bonner
2011

Explosion or blast injuries account for the largest number of injuries sustained in the Iraq and Afghanistan wars. For non-penetrating brain injuries, there is a lack of concrete scientific knowledge to explain how kinetic energy from a blast transfers into pressure transients in the brain. Animal model studies of the effects of traumatic brain injuries in rats are currently being conducted. A thin film MEMS pressure sensor has been modified for implantation into a rat brain, and is able to sense dynamic pressure waves a rat is exposed to in a blast. Additionally, the sensor is able...