NanoTechnology: Materials, Processes & Devices

Research that includes:

  • Development of nanostructure fabrication technology
  • Nanomagnetics, Microphotonics
  • CMOS Integrated Nanowires/Nanotubes (CMOS-Inn)

BPN932: A Fully Integrated and Self-Powered Smartwatch for Continuous Sweat Glucose Monitoring

Jiangqi Zhao
Yuanjing Lin
2019

Wearable devices for health monitoring and fitness management have foreseen a rapidly expanding market, especially those for noninvasive and continuous measurements with real-time display that provide practical convenience and eliminated safety/infection risks. Herein, a self- powered and fully integrated smartwatch that consists of flexible photovoltaic cells and rechargeable batteries in form of a “watch strap”, electrochemical glucose sensors, customized circuits and display units integrated into a “dial” platform, is...

BPN937: Nanoplasmonic PCR-based Rapid Precision Molecular Diagnostic Chip

Youngseop Lee
Wonseok Kim
2020

Emerging molecular diagnosis requires ultrafast polymerase chain reaction (PCR) on chip for rapid precise detection of infectious diseases, neurodegenerative diseases, cardiovascular diseases, or cancers. Here we report nanoplasmonic PCR-based rapid precision molecular diagnostic chip. The nanoplasmonic pillar arrays (NAPA) comprise gold nanoislands on the top and sidewall of large-scale glass nanopillar arrays. The nanoplasmonic pillars enhance light absorption of a white light- emitting diode (LED) over the whole visible range due to strong...

BPN942: Metal-organic Frameworks with Three-dimensional Ordered Superstructures as Plasmonic Sensing Materials

Zhou Li
Adrian Davey
Aifei Pan
2020

Assembly of particles into long-range, three-dimensional (3D), ordered superstructures is crucial for the design of a variety of materials including plasmonic sensing materials. Spherical colloidal particles (mainly silica or polymers such as polystyrene and acrylates) have traditionally been used to build assembled superstructures. Recently, great progress has also been achieved in the assembly of spherical and polyhedral inorganic-based particles. However, this progress has not led to the use of other families of purely organic or hybrid metal-organic...

BPN888: Large-Area Processing of Monolayer Semiconductors for Lighting Applications

Der-Hsien Lien
2020

Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS2, WS2, MoSe2, and WSe2) to overcome these problems. Electroluminescence from this dopant-free two- terminal device is obtained by...

BPN929: Electrochemical Sensors with Reduced Drift and Enhanced Stability

Yuanjing Lin
2020

Development of reliable glucose sensors for noninvasive monitoring without interruption or limiting users’ mobility is highly desirable, especially for diabetes diagnostic which requires routine/long term monitoring. However, their applications are largely limited by the relatively poor stability. Herein, a porous membrane is synthesized for effective enzymes immobilization and it is robustly anchored to the modified nanotextured electrode solid contacts, so as to realize glucose sensors with significantly enhanced sensing stability and mechanical robustness....

BPN954: Quantum Dots Based High-performance Gas Sensors

Sikai Zhao
2020

In recent years, the demands for high-performance gas sensors are rapidly increasing in many fields including environmental monitoring, public health and security, medical diagnostics, and industrial process monitoring. Among various types of gas sensors, the resistive metal-oxide-semiconductors (MOS) are very attractive and widely applied due to their high sensitivity, low cost, facile operation, and high compatibility with microfabrication processes. The working principle of such gas sensors is based on the reversible changes in the sensor’s resistance caused by the gas adsorption and...

BPN952: Zr-MOFs for Colorimetric Detection of Acidic Gases

Zhou Li
Adrian K. Davey
Aifei Pan
2020

Among the large family of metal-organic frameworks (MOFs), Zr-based MOFs, which exhibit rich structure types, outstanding stability, and intriguing properties and functions, are foreseen as one of the most promising MOF materials for practical applications. This project aims to leverage the excellent adsorption capacity of Zr-MOFs to acidic gases such as NO2, SO2 and CO2 to develop sensing materials that respond to these target gases by changing color. MOF-808 is chosen due to its large pore size of 18.4 Å and excellent stability in acidic environments. Basically, amines including...