NanoTechnology: Materials, Processes & Devices

Research that includes:

  • Development of nanostructure fabrication technology
  • Nanomagnetics, Microphotonics
  • CMOS Integrated Nanowires/Nanotubes (CMOS-Inn)

BPN841: Fast-Response Silver Passive Temperature Sensor via Electro-Hydrodynamic (EHD) Printing Method

Hyung-Seok Jang
2016

Electro-Hydrodynamic (EHD) Printing based direct write method has been demonstrated that the efficient fabrication process for the fast-response and super-thin silver (Ag) passive temperature sensor. For the direct write Ag passive temperature sensor, biological polymer was applied for efficient Ag nanostructure formation, and the EHD Printer directly eject and deposit this Ag precursor ink on the substrate. During annealing process this Ag passive sensor rapidly produce the 2D nanoparticles from the air/water interface and directly sintered to Ag thin film patterns in 200oC. This...

BPN762: Microheater-Based Platform for Low Power Combustible Gas Sensing

Anna Harley-Trochimczyk
2016

Accurate detection of flammable gases is essential for safe operation of many industrial processes. Installing networks of combustible gas monitors in industrial settings can allow for rapid leak detection and increased safety and environmental protection. However, existing combustible gas monitors are not suitable for use in wireless sensor networks due to the high power consumption. We have developed an ultra-low power combustible gas sensor with competitive sensitivity and lifetime characteristics that will enable ubiquitous wireless monitoring of combustible gases in industrial...

BPN819: Hybrid Porous Nanowire Arrays for High Energy Supercapacitor

Sinem Ortaboy
2016

Recently, silicon-based supercapacitors have received considerable attention for application in mobile and remote sensing platforms due to their unique properties such as high surface area, low cost, long lifetimes, and excellent charge–discharge capability. These promising energy storage devices store more energy than conventional dielectric capacitors and deliver higher power with longer cycle life than available battery technologies. Recent studies in the field of supercapacitors have focused on the realization of hybrid materials to further improve the energy density of...

BPN694: Monolayer Semiconductor Devices

Matin Amani
2016

Transition metal dichalcogenides (TMDCs) have the potential to be used in the future generation of electronic and optoelectronic devices due to their superior material properties compared to the conventional semiconductors. Although many proof of concept devices have been shown using TMDCs, the presence of large contact resistances are still a fundamental challenge to be able to realize the full potential of this material family in the functional devices. In this work, we study defect engineering by using a mild H2 plasma treatment to create defects in the WSe2 lattice. Material...

BPN827: Metal Oxide-decorated Silicon Carbide Nanowires Electrode for The Applications on Electrochemical Energy Storage

Chuan-Pei Lee
Steven DelaCruz
2016

Since the discovery of electricity, we are looking for promising methods to store that energy for use on demand. In the energy storage industry, electrochemical water splitting is a well-established technology to convert electricity into chemical energy, addressing the issues of effective storage and transport. On the other hand, electrochemical capacitors, namely supercapacitors, have also attracted much attention for electrical energy storage because of their feature of both high power density and energy density. In this work, we are developing processes for the synthesis of metal...

BPN832: Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers

Sujay B. Desai
Mark Hettick
2016

Gold-mediated exfoliation of ultralarge optoelectronically perfect monolayers with lateral dimensions up to ≈500 μm is reported. Electrical, optical, and X-ray photo­electron spectroscopy characterization show that the quality of the gold- exfoliated flakes is similar to that of tape- exfoliated flakes. Large-area flakes allow manufacturing of large-area mono­layer transition metal dichalcogenide electronics. Further work involves automating and mechanizing the transfer process for more controlled exfoliation and transfer of TMDC monolayers onto desired substrates.

...

BPN834: Direct Formation of Pore-Controllable Mesoporous SnO2 for Gas Sensing Applications

Won Seok Chi
Hu Long
2017

Amphiphilic graft copolymer self-assembly provides an effective method to create mesoporous structures that can act as templates for the synthesis of inorganic materials with controlled morphology. In this project, we are using PVC-g-POEM graft copolymer as a template for mesoporous SnO2 fabrication directly onto a microheater platform for gas sensing applications. The sol-gel solutions are composed of PVC-g-POEM and SnO2 precursor with tunable composition allowing the formation of various structures with controllable pore size, and surface area. The mesoporous SnO2 structure is...

BPN813: Novel Hierarchical Metal Oxide Nanostructures for Conductometric Gas Sensing

Ameya Rao
2017

Semiconducting metal oxides have been extensively studied as sensing materials for conductometric gas sensors. Nanostructured metal oxides integrated with miniaturized heating elements have been shown to exhibit particularly high sensitivity while maintaining low power consumption. However, the incorporation of nanostructured metal oxide films onto miniaturized heater-based sensing platforms commonly suffers from uncontrollability in film thickness and microstructure, which reduces sensor performance and fabrication reproducibility. We have developed a controllable and flexible...

BPN800: Solution Processed Oxide Materials

Hyun Sung Park
2017

Recently there has been growing interest in transparent conductive oxides(TCOs) and oxide semiconductors, they are key components for future transparent electronics devices. But there are needs for finding new TCOs and oxide semiconductors because the Indium and Galium are expensive rare earth material and the price is still increasing. Also, conventional vacuum based process is a problem for large scale and complicated geometry devices. In this project, I introduced new TCO material(ATO) and oxide semiconductor for the future transparent electronics devices by using solution process...

BPN777: Nonepitaxial Growth of Single Crystalline III-V Semiconductors onto Insulating Substrates

Kevin Chen
Sujay Desai
2017

III-V semiconducting materials have many characteristics such as high electron mobilities and direct band. gaps that make them desirable for many electronic applications including high performance transistors and solar cells. However, these materials generally have a high cost of production which significantly limits their use in many commercial applications. We aim to explore new growth methods which can grow high quality crystalline III-V films, using InP as an example substrate, onto non-epitaxial substrates. In addition to excellent crystal quality, critical considerations...