NanoPlasmonics, Microphotonics & Imaging

Research that includes:

  • Polymer, printed optical lenslet arrays
  • Microfluidic tuneable photopolymer lenses
  • Optical switches and planar lightwave MEMS
  • Vertically integrated microconfocal arrays
  • Bio-inspired integration of tuneable polymer optics with imaging electronics

BPN578: III-V / Silicon Photonic Integration

Myung-Ki Kim

Many semiconductor-based nanolaser cavities using metal have been remarkably reported in past few years. However, the efficient coupling of these small cavities to waveguides still remains a large challenge. Here, we show highly efficient coupling of a wavelength-scale III-V metal-clad high-quality nanolaser cavity operating the fundamental dielectric cavity-mode to a silicon-on-insulator waveguide. By engineering the effective refractive-index and the field distribution of the cavity mode, the quality factor is maximized as 1700 with a modal volume of 0.28 (lambda/n)^3. Furthermore...

BPN547: Eagle-Beak Nanoantenna as Dual Electric Field and Thermal Gradient Generator for Single Molecule SERS

SoonGweon Hong
Eric P. Lee
Brendan W. Turner

A nanoantenna, upon absorbing incident light, emits focused electric and thermal fields. Our proposed 'eagle-beak' nanoantenna generates strongly amplified electric fields (hot-spots) at its tip and along its edges. Also it is designed to utilize the two field gradients for preconcentration of target molecules around the hot-spots. Previously we demonstrated non-blinking single-molecule SERS with conventional Raman molecules with excellent enhancement factor of 10^14. Here, we expand its applications to Raman polarization studies as well as biomolecular detection (i.e. amyloid beta...

BPN600: Nanogap Junction Control of Gold Optical Antennas via Electroless Deposition

Benjamin M. Ross

We demonstrate the fine control of the nanogap junction of optical antennas by electroless growth, which provides a simple but powerful method to tune nanoplasmonic properties for integrated optofluidics.

Project end date: 02/06/12

BPN580: Nanovolcano Array For Biomolecular Analysis

Seung-min Park
Soongweon Hong

Optical transmission through a very small nanoaperture decorated with concentric gratings on the apex of a metallic micropyramid can guide the beam path after transmission. A micro-pyramidal probe with periodic grooves acts as an antenna in terms of beam radiation as well as a lens in terms of beam focus. We optically resolve that the transmitted beam is splitted to the corresponding pyramid surfaces guided by gratings. By using the pseudo-Kretschmann configuration and grating surface plasmon polariton coupling, we can explain that SPPs propagating along a pyramidal surface modulated...

BPN667: Optical Absorption Study of 2-Dimensional III-Vs

Hui Fang
Kuniharu Takei

Recently, a new type of 2-D material, free standing InAs nanomembranes (thickness of 3 - 19 nm), as a representative of III-V semiconductors, was realized by layer transfer and this enables optical studies of 2-D InAs which were previously inaccessible, by decoupling those ultra-thin layers from original growth substrates to any optically transparent substrates. By using Fourier Transform Infrared (FTIR) spectroscopy, we directly observe the optical transitions from 2-D subbands, with energy spacing in line with the particle in the box model. Furthermore, it is found that the...

BPN673: Gold Virus Nanoparticle for Molecular Imaging

SoonGweon Hong

An ideal nanoscopic method via optical antenna can accomplish remarkable features in molecular detection such as single-molecule sensitivity and molecular fingerprint mining as non-invasive optical mechanism. However, ideal nanoscopic probes achieving these properties are still beyond current nanotechnology capability, being a bottleneck to practical applications. Herein, we are investigating potential of virus nanoparticles for sensitive molecular imaging probes by being integrated with optical antennae. Looking to the detail of viral capsids finds an ideal morphology of optical...

BPN457: Nanopatch Lasers

Amit Lakhani

The physical size and effective modal volume of conventional lasers with visible and near-infrared emission wavelengths are usually in the micrometer range due to the diffraction limit. The length scale of electronic transistors, however, is currently sub-100 nm thanks to the advance of fabrication technologies. For future integration of electronic and photonic devices on a chip-scale platform, we need novel laser sources that are not only compact but also capable of steering light in any direction necessary and potentially electrically injectable. In this project, a nanopatch laser...

BPN510: High Linearity RF Photonic Links

John M. Wyrwas

Analog RF photonic links with low distortion and low noise are critical for high-dynamic range sensing and communications applications. This project seeks to develop optical modulators and receivers for high linearity, wideband 100 MHz to 4 GHz links.

Project end date: 08/17/12

BPN691: Nanoplasmonic Imaging of Specific Biochemical Data in Living Cells

Wei-Yin (Wein) Chien
Chi-cheng Fu
Inhee Choi
Sang Hun Lee

Current methods for biomolecular quantification inside cells are limited. We are developing an in-vivo nanoplasmonic imaging approach for multiplexed readout of intracellular biomolecular data – useful in the study of cellular dynamics and disease states.

Project end date: 09/09/12

BPN460: Optical Antenna for Ultra-High Efficiency Surface-Enhanced Raman Spectroscopy

Tae Joon Seok

Optical antennas are widely used in surface-enhanced Ramon spectroscopy (SERS) because of their ability to focus light in sub-diffraction-limited area, resulting in strong field enhancement. The field enhancement depends critically on the gap spacing of optical antennas. Current nanofabrication techniques such as focused ion beam milling and electron beam lithography are limited by poor uniformity and reproducibility as the dimension decreases below 10 nm, making it difficult to fabricate optical antennas with well-defined sub-10 nm gap spacing. In this project, we report on the...