NanoPlasmonics, Microphotonics & Imaging

Research that includes:

  • Polymer, printed optical lenslet arrays
  • Microfluidic tuneable photopolymer lenses
  • Optical switches and planar lightwave MEMS
  • Vertically integrated microconfocal arrays
  • Bio-inspired integration of tuneable polymer optics with imaging electronics

BPN523: Bio-Inspired Manipulation of Nanoplasmonic Architectures via Active Polymers

Benjamin M. Ross
Liz Y. Wu
2010

While technology relies on components defined in a fixed position on a rigid substrate, nature prefers soft substrates, and allows components to move significantly during morphogenesis. Taking inspiration from biological fabrication, we have developed a technique, called active polymer nanofabrication, which utilizes active (smart) polymers to create complex nanoplasmonic substrates designed for molecular detection.

Project end date: 02/01/11

BPN508: Carbon Nanotubes as Scaffolding for Surface-enhanced Raman Spectroscopy

Brendan W. Turner
2010

This project will introduce and determine enhancement factors for a novel carbon nanotube scaffolding for surface-enhanced Raman spectroscopy. We will fabricate and optimize the SERS surface on a wafer scale using inexpensive fabrication methods. Included will be a study of the de-wetting of Au on carbon nanotubes.

Project end date: 02/01/11

BPN536: Absorptive h-PDMS Plasmonic Nanopillars: A Replicable Substrate for Generating High SERS Signals by Chemical Concentration

Eric Lee
SoonGweon Hong
Brendan Turner
2010

This project addresses the utilization of Chemically Absorptive Nanopillars as a new, economical substrate to concentrate molecules and generate huge SERS enhancement. Experimental tests were conducted to demonstrate the absorptive property of the PDMS substrate, which concentrates target molecules around localized areas for enhanced SERS detection. Evidence of molecular concentration was demonstrated by monitoring the increasing fluorescence intensity of 1,2- bis(4-pyridyl) ethylene (BPE) as the molecules concentrate along the edge of an h-PDMS microfluidic channel. The SERS signal...

BPN569: Beta-Amyloid-Induced Membrane Perturbation and Cation Dyshomeostasis in Neurons and Relation to Alzheimer's Disease

Jae Young Lee
2011

Alzheimer's disease (AD) is the most common cause of dementia in the elderly population. During the progression, cognitive impairment extends to the domains of language, skilled movements, recognition and decision making. This research project are aimed at ultimately developing fast, innovative, and high throughput approaches for use in relevant biological model, as well as to utilize developing and existing technologies to break through the hurdles in Alzheimer’s disease research. To do so, systematic study of influences of beta-amylolid oligomers on cell dysfunction and death is...

BPN631: MEMS Lens Scanner

Niels Quack
Jeffrey Chou
2011

A linear MEMS lens scanner for laser beam scanning is developed in this project.

Project end date: 01/30/12

BPN493: Ultra-Low-Loss Hollow-Core Waveguides for Integrated Photonic Delay

Anthony M. Yeh
Karen E. Grutter
2011

Many optical devices can now be integrated on-chip, providing analogous benefits to those seen with the shift to electrical integration. However, integrated optical waveguides remain very lossy compared to their discrete component equivalent, optical fiber. This shortcoming presents a barrier to the introduction of integrated photonic delay lines with delay times on the order of hundreds of nanoseconds or more. DARPA has created the Integrated Photonic Delay (iPhoD) program to promote the development of integrated waveguides that are competitive with optical fiber in propagation loss...

BPN578: III-V / Silicon Photonic Integration

Myung-Ki Kim
2011

Many semiconductor-based nanolaser cavities using metal have been remarkably reported in past few years. However, the efficient coupling of these small cavities to waveguides still remains a large challenge. Here, we show highly efficient coupling of a wavelength-scale III-V metal-clad high-quality nanolaser cavity operating the fundamental dielectric cavity-mode to a silicon-on-insulator waveguide. By engineering the effective refractive-index and the field distribution of the cavity mode, the quality factor is maximized as 1700 with a modal volume of 0.28 (lambda/n)^3. Furthermore...

BPN547: Eagle-Beak Nanoantenna as Dual Electric Field and Thermal Gradient Generator for Single Molecule SERS

SoonGweon Hong
Eric P. Lee
Brendan W. Turner
2011

A nanoantenna, upon absorbing incident light, emits focused electric and thermal fields. Our proposed 'eagle-beak' nanoantenna generates strongly amplified electric fields (hot-spots) at its tip and along its edges. Also it is designed to utilize the two field gradients for preconcentration of target molecules around the hot-spots. Previously we demonstrated non-blinking single-molecule SERS with conventional Raman molecules with excellent enhancement factor of 10^14. Here, we expand its applications to Raman polarization studies as well as biomolecular detection (i.e. amyloid beta...

BPN600: Nanogap Junction Control of Gold Optical Antennas via Electroless Deposition

Benjamin M. Ross
2011

We demonstrate the fine control of the nanogap junction of optical antennas by electroless growth, which provides a simple but powerful method to tune nanoplasmonic properties for integrated optofluidics.

Project end date: 02/06/12

BPN580: Nanovolcano Array For Biomolecular Analysis

Seung-min Park
Soongweon Hong
2011

Optical transmission through a very small nanoaperture decorated with concentric gratings on the apex of a metallic micropyramid can guide the beam path after transmission. A micro-pyramidal probe with periodic grooves acts as an antenna in terms of beam radiation as well as a lens in terms of beam focus. We optically resolve that the transmitted beam is splitted to the corresponding pyramid surfaces guided by gratings. By using the pseudo-Kretschmann configuration and grating surface plasmon polariton coupling, we can explain that SPPs propagating along a pyramidal surface modulated...