The main goal of this project is the development of water-powered microfluidic devices for diagnostic and drug delivery applications. Osmosis, capillarity, microfabrication, and polymer processing techniques are employed to design and fabricate microfluidic devices, including channels, actuators, valves, pumps, and flow discretizers. Because of the significant reduction on electricity consumption, water-powered microfluidic devices provide attractive alternatives for the realization of lower-power diagnostic and implantable drug delivery systems.
Project end date:...