BPN608: FM Gyroscope

Abstract: 

MEMS gyroscopes for consumer devices, such as smartphones and tablets, suffer from high power consumption and drift which precludes their use in inertial navigation applications. Conventional MEMS gyroscopes detect Coriolis force through measurement of very small displacements on a sense axis, which requires low-noise, and consequently high-power, electronics. The sensitivity of the gyroscope is improved through mode-matching, but this introduces many other problems, such as low bandwidth and unreliable scale factor. Additionally, the conventional Coriolis force detection method is very sensitive to asymmetries in the mechanical transducer because the rate signal is derived from only the sense axis. Parasitic coupling between the drive and sense axis introduces unwanted bias errors which could be rejected by a perfectly symmetric readout scheme. This project develops frequency modulated (FM) gyroscopes that overcome the above limitations. FM gyroscopes also promise to improve the power dissipation and drift of MEMS gyroscopes. We present results from a prototype FM gyroscope with integrated CMOS readout electronics demonstrating the principle.

Project ended: 03/31/2022

Publication date: 
March 8, 2022
Publication type: 
BSAC Project Materials (Final/Archive)
Citation: 
PREPUBLICATION DATA - ©University of California 2022

*Only registered BSAC Industrial Members may view project materials & publications. Click here to request member-only access.