Physical Sensors & Devices

Research that includes:

  • Silicon MEMS actuators: comb, electro-thermal, and plastic deformation
  • Precision electronic sensing and measurements of capacitive, frequency, and coulombic MEMS variables
  • Structures and architectures for gyroscopes, accelerometers, micro strain gauges for direct application to rigid structures e.g., steel, and levitated MEMS

BPN951: Berkeley Low-cost Interplanetary Solar Sail (BLISS)

Alexander Alvara
Lydia Lee
Bhuvan M. Belur
2023

Space exploration often costs multiple millions of dollars for each exploratory mission to get a single piece of equipment into orbit. These missions usually return information in the form of scans or images or samples in the form of extracted material. This work proposes the manufacture and deployment of thousands of imaging capable solar sails systems with 10 gram payloads. Power generation is enabled through solar panels and batteries. Navigation is enabled through one square meter solar sails maneuvered by inchworm motors. Communications are enabled by laser transmitters and SPAD...

BPN735: Walking Silicon Microrobots

Alexander Alvara
2023

This project focuses on developing a new generation of millimeter scale MEMS-based autonomous walking robots with self-righting capability. These robots are based on electrostatic actuators driving planar silicon linkages, all fabricated in the device layer of a silicon-on-insulator (SOI) wafer. By using electrostatic actuation, these legs have the advantage of being low power compared to other microrobot leg designs. This is key to granting the robot autonomy through low-power energy harvesting. The ultimate goal will be to join these silicon legs with a CMOS brain, battery power, a high...

BPN946: Sensor for Natural Sweat Analysis

Sorour Darvishi
2023

Wearable sweat sensors have emerged as attractive platforms for non-invasive health monitoring. While most sweat sensors have relied on exercise or chemical stimulation to generate sweat, natural thermoregulatory sweat is an attractive alternative as it can be accessed during routine and even sedentary activity without impeding user lifestyles, while also potentially preserving correlations between sweat and blood biomarkers. For rapid accumulation of natural sweat that enables quick, single-point measurement of sweat analytes, we develop a simple, skin-attachable sensing platform to...

BPN992: Sensing and Actuation Applications Using Lithium Niobate PMUTs (New Project)

Wei Yue
Hanxiao Liu
Yande Peng
2023

Sensing, actuation and imaging applications based on ultrasounds could expand to many applications by means of miniaturization and low power consumption via MEMS fabrication technologies. Piezoelectric micromachined ultrasound transducers (PMUTs) with thin film designs have emerged as key commercial products but current state-of-art PMUTs are limited by the acoustic power/pressure for applications within a limited range by using AlN as the piezoelectrical material due to its process compatibility with microelectronics. One BSAC industrial member has developed a process to make PMUT...

BPN991: Autolabeling for Large-Scale Detection Datasets (New Project)

Philip L. Jacobson
2023

3D perception is an essential task for autonomous driving, and thus building the most accurate, computationally efficient, fast, and label efficient models is of great interest. My research is particularly aimed at building detection models in the label-efficient (semi/self-supervised) and offline (auto-labeling) settings, areas which have both been under-explored in the literature. To improve 3D detection in these settings, I look to leverage sensor fusion (camera and LiDAR especially) and temporal fusion. In the off-board setting, 3D detection can be greatly enhanced by leveraging...

BPN978: Hot Car Studies

Anthony Hon
2023

CO2 Monitoring Inside of a Car Cabin

Young children trapped in a car without adult supervision may suffer life-threatening complications such as hyperthermia and heat stroke from extreme temperatures—which may rise to 130 °F in some cases. Our research aims to ascertain child presence within two to three minutes of unsupervised activity by probing increases in the levels of carbon dioxide emitted during human exhalation. Non-dispersive infrared (NDIR) sensors are employed to measure car carbon dioxide concentrations every two seconds. Specific numerical metrics are then
...

BPN965: Phonon Protected Superconducting Qubits

Mutasem Odeh
Kadircan Godeneli
2023

Superconducting quantum circuits are leading candidates for quantum computing. Scaling up these systems for practical applications will require compact coherent qubits that store the quantum states, high fidelity quantum gates that process them, and a scalable architecture that can accommodate complex error correction circuits. Meeting such requirements is mainly impeded by the unavoidable presence of two-level systems (TLS), which act as a decoherence source that results in the loss of quantum information via phonon emission. In this project, we engineer superconducting circuits...

BPN920: Robust, Multimodal Sweat Sensors with High-Throughput Fabrication

Noelle Davis
Ashwin Aggarwal
Sorour Darvishi
2023

In the field of sweat monitoring, many sensors have been piloted with one or two subjects over limited periods of time, but there is a need for prolonged, large-scale studies to establish reliable physiological correlations that account for diverse subjects, activities, and environments. Chemical sensors provide the concentration of analytes of interest, including sodium, potassium, and glucose, while sweat rate sensors provide standalone information on nerve function and hydration. Monitoring both of these in parallel will enable the decoding of concentrations of analytes that are...

BPN962: Insect-Scale Flying Robots

Fanping Sui
Kamyar Behrouzi
Wei Yue
2022

Insect-scale untethered flight with maneuverability is very challenging toward possible practical applications and attitude-stabilized flight (hovering) is one of the first steps for long-time air flight operations. In this project, we introduce the insect-scale, untethered, rotating-wing aerial vehicles with inherent stability by the gyroscopic effect to achieve several key advancements: (1) powered by alternating magnetic fields wirelessly; (2) 160-mg in weight and 20.0-mm-in-diameter in size – smallest untethered flying robot in the world; and (3) attitude-stabilized flights (...

BPN983: Materials and Devices for Bright UV LEDs

Shu Wang
2023

Wide band gap semiconductors are crucial for applications in power electronics, displays, solid-state lightning and many other fields. Due to their intrinsic structure and electronic properties, many wide band gap semiconductors can not be intentionally doped as desired, which limits their role in electronic and optoelectronic devices. In this project, we propose tuning the optoelectronic properties of wide band gap semiconductors electrically to enhance its luminescence efficiency.

Project currently funded by: Member Fees