NanoPlasmonics, Microphotonics & Imaging

Research that includes:

  • Polymer, printed optical lenslet arrays
  • Microfluidic tuneable photopolymer lenses
  • Optical switches and planar lightwave MEMS
  • Vertically integrated microconfocal arrays
  • Bio-inspired integration of tuneable polymer optics with imaging electronics

BPN332: Monolithic micromirror array for single-chip MEMS-based dense wavelength division multiplexed (DWDM) crossconnect

Chenlu Hou
2007

The new goal of this project is to develop a micromirror array, which can be integrated into monolithic 1xN wavelength-selective switch (WSS) and NxN wavelength-selective cross connect (WSXC) for dense wavelength division multiplexed (DWDM) network. The 0.8nm channel spacing of DWDM network requires a forty- element micromirror array with a pitch of 75�m for independent spatial switching of incoming wavelength channels among output waveguides. For integration into a 1x4 WSS and 4x4 WSXC, the micromirror requires a maximum mechanical scan angle of 9.2�.

Project end...

BPN308: Plastically Self-Aligned Micromirrors

SangHoon Lee
Chieh Chang
2008

This project aims to use the plastic deformation of single-crystal-silicon as the key process to make Angular Vertical Comb-drive (AVC) torsional microactuators using a simple three-mask process on silicon-on-insulator wafer and yet providing versatility for the potential applications in Optical MEMS (switches, bi-directional free-space laser communications), RF MEMS (variable capacitor), Image/display (head mount display) and the others.

Project end date: 07/30/08

BPN337: Fast, MEMS-Based Phase-Shifting Interferometer

Hyuck Choo
Rishi Kant
David Garmire
2008

We are developing a handheld bio-chemical sensor using the fast, MEMS-based, phase-shifting interferometer (MBPSI) that we have demonstrated at the Berkeley Sensor & Actuator Center.

Project end date: 08/12/08

BPN429: Plasmonic Nanocrescent Array for Ultrasensitive Biomoleculer Detection

Liz Y. Wu
SoonGweon Hong
2009

Previously, we developed novel gold nanophotonic crescent moon structures with a sub-10 nm sharp edge, which can enhance local electromagnetic field at the edge area. In this project, we present a uniform array of the gold nanocrescents to generate stronger local electromagnetic field by summing up the effects of inter-particle and intra-particle electromagnetic field coupling. Stronger surface enhancement Raman scattering (SERS) signal is expected from the nanocrescent array due to the high density of the “hot spots”. The long-term goal of this project is to apply this uniform...

BPN423: Heterogeneous integration of microdisk laser on a silicon platform using lateral-field OET assembly

Ming-Chun (Jason) Tien
Kyoungsik Yu
2009

Semiconductor lasers on a silicon platform have attracted much attention due to the potential of integration with CMOS integrated circuits. Silicon Raman lasers have been demonstrated, however, they still require external optical pumps. Heteroepitaxy can grow compound semiconductor lasers directly on Si, but the growth temperature (> 400oC) is usually too high for post CMOS processing. To circumvent this issue, electrically-pumped compound-silicon hybrid lasers have been integrated on Si wafers utilizing oxygen plasma-assisted wafer bonding or DVS-BCB-assisted bonding techniques....

BPN471: Nanogap Plasmonic Mirror Structure for Surface Enhanced Spectroscopy

Benjamin Ross
Jason Silver
2009

We intend to show that by engineering a plasmonic mirror between a metallic substrate and gold nanoparticles, high local electromagnetic field enhancement can be achieved. Furthermore, we hope to achieve the structure on a wafer level scale with inexpensive "bottom up" technologies.

Project end date: 08/11/09

BPN422: Nanophotonic Supported Lipid Bilayers

Christopher E. Korman
2009

The lipid bilayer membrane is crucial to the proper functioning of biological processes. It not only secludes a cell’s contents from the surrounding environment, but the membrane itself also serves as a dynamic scaffold for membrane proteins. The lipid membrane’s thickness is of nanoscale dimension, thus making it an ideal structure for nano and micro bioengineering applications. My research of biological membranes is two-fold. The first objective is to engineer a microfluidic structure that serves as learning tool for understanding the fundamental mechanical behavior of lipid...

DAH3: Single-Crystal PMN Bimorph Deformable Mirrors

Hyunkyu Park
2009

This project is focused on characterizing and modeling MEMS deformable mirrors for adaptive optics. We are interested in improving both the design and control of these mirrors as well as in developing new characterization and wavefront sensing methods. Although this project is presently targeted towards the vision science applications of adaptive optics, we are also interested in other applications requiring high-speed correction.

Project end date: 08/20/09

BPN447: BioMolecular Plasmonics of 'Nanocrown'

SoonGweon Hong
Yeonho Choi
2009

There is intense interest in electromagnetic fields in nanoscale metal structures because the difference of optical properties from bulk material is useful for biological and chemical sensing application. To control light-metal interaction, delicate fabrication such as electron-beam lithography and self-assembly, is necessary for waveguides below the diffraction limit of light. In this project, optimization of the nanostructure called 'nanocrown' based on template by mechanical, chemical and electrical self-assembly will be studied.

Project end date: 01/30/10

BPN515: Nanoplasmonic Antenna on Hexagonal Mirror Array for SERS

Eric P. Lee
YoungGeun Park
Yeonho Choi
SoonGweon Hong
2009

In recent years, SERS has been researched actively in order to develop label-free chemical, biological, medical, or environmental detections. This project addresses the SERS enhancement generated through the self-assembly of gold nanoplasmonic particles on a curved hexagonal mirror array to achieve highly sensitive probes. Self ordering anodic aluminum oxide coated with a thin layer of gold will serve as the curved hexagonal mirror array as well as a template for the self assembly of the nanoparticles. The SERS substrates utilize coupling between the continuous metal, mirror film and...