Microfluidics

Research that includes: 

  • Microvalves and fluidic flow control
  • Micropumps
  • Modeling of microfluidics
  • Particulate air monitoring
  • Flow Sensors
  • Capillary Pump Loop
  • Optoelectronic Transport & Tweezers

BPN702: A Continuous-Flow Microdroplets Lysis System

Kosuke Iwai
Ryan D. Sochol
2014

This Project aims for developing a versatile continuous-flow system for lysing microdroplet. Microdroplets have been widely utilized in diverse chemical and biological research and applications such as DNA sequencing or nanoparticle synthesis. Although highly robust and easy handling techniques of droplets are essential for those purposes, difficulties still remain in retrieving inner contents (e.g. cells, microbeads, biomolecules, reagents) of droplets for further experiments. Here we present a novel microfluidic system to achieve three distinctive accomplishments: (i) guiding...

BPN621: Microfluidic Separation of Blood

Kathryn Fink
Karthik Prasad
2015

The goal of this research is to characterize and optimize a continuous-flow, blood fractionation platform using particle image velocimetry to analyze the critical operating parameters. The microfluidic system will separate from a blood sample a platelet-enriched plasma containing pathogens and pathogenic biomarkers. It will also provide a stream of concentrated blood cells including pathogenic plasmodial cells.

Project end date: 02/02/15

BPN723: Organ-on-a-Chip for Personalized Medicine Development

SoonGweon Hong
Sang Hun Lee
2014

A new era of drug discovery and development is being marched with the concept of “personalized medicine”. “Organ-on-a-chips or OCs” are one of the movements, which are to recapitulate 3-dimensional organ models in microfluidic culture platforms. By combining iPSC-derived human organ cells, individuals’ physiological response can be investigated so that the needs of animal model, inadequately representing human physiology, will be vanished in drug development in a near future. Herein,we are challenging the development of liver-, heart-, and brain-on-a-chip for the organs most...

BPN733: Optoelectronic Tweezers for Long-Term Single Cell Culture

Shao Ning Pei
Tiffany Dai
2015

In contrast to bulk analysis, analyzing biological samples on a single-cell level is a powerful tool in deriving a more complete, quantitative understanding of cellular behavior. The optoelectronic tweezers (OET) platform utilizes light-generated dielectrophoretic force to manipulate micro-scale objects reconfigurably on the device surface. Consequently, OET is able to select for individual cells and manipulate them into a specific configuration where these cells are cultured and studied for an extended period of time. Compared to trap-based single-cell techniques, the OET platform...

BPN679: Portable Microfluidic Pumping System for Point-Of-Care Diagnostics

Erh-Chia Yeh
2015

It is desirable for medical diagnostic assays to have portable and low cost pumping schemes. Although capillary loading is the most common example, it cannot load dead-end channels, often have fibres that obstruct optics, and have surface treatment or geometrical constraints. On the other hand, conventional degas pumping lacks flow control, speed, and reliability. Here we report a new portable pumping system that does not require any peripheral equipment or external power sources/controls. Compared with conventional degas pumping, it has ~8 times less standard deviation in speed, is...

BPN778: Single-cell MicroRNA Quantification for Gene Regulation Heterogeneity Study

Qiong Pan
Soongweon Hong
2015

MicroRNAs can affect individual cells’ epigenetic modifications in a variety of biological processes such as cell cycle regulation, apoptosis, cell differentiation and maintenance of stemness. These modifications can be largely heterogeneous depending on the internal and external factors. However, traditional tube- based qPCR or microarray system is lack of sensitivity and requires intensive labor and time input. Current integrated single- cell miRNA detection platforms are lack of the capacity of handling thousands of cells at the same time for statistical meaningful data...

BPN773: Human Induced Pluripotent Stem Cell-derived Hepatocytes (hiPSC-HPs)-based Organs on Chip

Alireza Salmanzadeh
2015

Three major barriers inhibit current research in human drug screening: experimental in vivo interventions in people have unacceptable risks; in vitro models of human tissue are primitive; and, non- human animal models are not directly comparable to humans. However, currently there is no in vitro platform that recapitulates physiological microenvironments using human induced pluripotent stem cells (hiPSC). Here we demonstrated hiPSC-derived hepatocytes (hiPSC-HPs)-based organs on chip, consisting of three functional components: a cell culture pocket, an endothelium-like perfusion...

BPN775: Integrated Microfluidic Circuitry via Optofluidic Lithography

Kevin Korner
Casey Glick
2015

Mechanical engineering methods and microfabrication techniques offer powerful means for solving biological challenges. In particular, microfabrication processes enable researchers to develop technologies at scales that are biologically relevant and advantageous for executing biochemical reactions. Here, optofluidic lithography- based methodologies are employed to develop autonomous single-layer microfluidic components, circuits, and systems for chemical and biological applications.

Project end date: 09/19/15

BPN806: Very Large Scale Single Cell Microprocessor for Rapid Gene Analyzer: A Game-Changer for Single Cell Biology and Medicine

Liang Zhao
2015

Single cell transcriptional gene expression profiling is still highly plagued by limited starting material from single cells, time- consuming sample preparation, and lacks of game-changing platform that enables cells-in-answer-out analysis of an individual cell. To revolutionize this scenario, herein, we develop a very large scale integrated microfluidic single cell analyzer that allows rapid gene expression measurements within one hour over hundreds of single cells plus 24 genes via multiplex qPCR assay on a single chip in per run. In order to execute single cell gene analysis on...

BPN794: Bubble-Free Microfluidic PCR

Sanghun Lee
2015

Microfluidic polymerase chain reaction (PCR) has been of great interest owing to its ability to perform rapid and specific nucleic acid amplification and analysis on small volumes of samples. One of the major drawbacks of microfluidic PCR is bubble generation and reagent evaporation, which can cause malfunctions. Here, we propose a bubble-free microfluidic PCR device via controlled fluid transfer. We design the PCR chamber surrounding circumferential chamber allows a guided-fluid transport of generated bubble to circumferential chamber through thin nanoporous PDMS sidewall. We...