Kristofer S.J. Pister (Advisor)

Research Advised by Professor Kristofer S.J. Pister

Pister Group:  List of Projects | List of Researchers

KSJP27/JD: MEMS Design Synthesis and Optimization

Corie L. Cobb
2008

The goal of this project is to create useful, efficient design synthesis tools for MEMS devices. Design synthesis helps engineers develop rapid, optimal configurations for a given set of performance and constraint guidelines. The current MEMS design synthesis tool is based on a case-based design library and uses variant optimization techniques for adapting old designs to new design problems. The design synthesis tool recommends the initial designs to the designer based on the given design specifications and further optimizes the design parameters to satisfy the design performance...

BPN415: Localization of Footsteps through Ground Vibrations

Travis Massey
2008

Target localization, the ability to determine the location of a target, is becoming increasingly attractive for purposes of security and automation. Vibrational localization is the method of sensing and calculating the target’s location using vibrations transmitted through the ground. This method of localization does not require a line of sight to the target, is not limited by dilution of precision, and can detect any moving object or person. Vibrational localization was formerly restricted by the noise performance and sensitivity limitations of accelerometers and other circuit...

KSJP28: Location Estimation Using RF Time of Flight

Steven Lanzisera
2009

An enabling technology for large scale sensor networks is the ability to determine a sensor node’s location after deployment. Some applications, such as inventory management, use sensors that move regularly, and this spatial information is crucial to the network's operation. A device to wirelessly measure the distance between two network nodes using an RF transceiver will be developed. The distance measurement is performed by calculating a cross correlation between a received and an expected signal. Methods for reducing the effects of noise, clock offset and multipath propagation...

BPN506: Wireless Physician Tracking

Samuel Zats
Steven Lanzisera
2009

Healthcare associated infections result in over 90,000 deaths at a cost of $4.5 – 5.7 billion annually. The Physician Tracking Project seeks to create a wireless sensor network which tracks the activity of physicians within a clinic. The system will log and notify physicians if he or she has approached a patient without the reapplication or cleansing of the hands. The project is in support and collaboration with the UC Davis Medical Center.

Project end date: 08/12/09

BPN561: Sensors and Capability Modeling for Palm-Sized Flying Robots

Anita Flynn
2010

Recent breakthroughs in understanding insect flight have led to increased interest in small robotic flying aircraft which can hover and navigate through cluttered environments. MEMS inertial sensors have been an enabler in this regard. What types of additional sensors are required for autonomous flight and of what sorts of behaviors could palm-sized fliers be capable? We are performing a Multidisciplinary Design Optimization, combining constraints of propulsive technologies, powertrain efficiencies, novel sensors and communication drop-off payload to understand this space. The...

BPN558: 16-Channel IEEE802.15.4 Packet Sniffer

Boyang Zhang
Thomas Watteyne
2010

The goal of this project is to build a multi-channel sniffer capable of listening on all available channels at the same time, and which can interpret the packets it receives. In its current state, 16 Atmel IEEE802.15.4 radios are driven by software capable of parsing packets into a user defined format. A front end graphical user interface displays the content of the received packets. Frequency-agile protocols for low power wireless sensor networks, such as IEEE802.15.4E or WirelessHART, use channel hopping to increase the robustness of the wireless link. In these networks, packets...

BPN479: Protocol-Agnostic Compression in Mobile Ad-hoc Networks (PACMAN)

Travis Massey
2010

Compression of packets in wireless sensor networks and mobile ad-hoc networks is of great interest because of the substantial opportunities for power and bandwidth savings. The method of compression discussed here is protocol agnostic, meaning that it operates with any combination of MAC, NET, TRAN, and APP layer protocols in an IEEE 802.15.4 network, while all previously devised compression schemes for wireless sensor data have a more substantial protocol dependence and thus require revisions as protocols are updated, or even complete replacement. Secondly, this method is adaptive,...

BPN524: Wireless Sensor Network Scalability and Deployment in Industrial Automation

Samuel B. Zats
2010

Analyses and simulations of a comprehensive wireless sensor network for industrial automation applications. Utilizing WirelessHART architecture, the proposed network will consist of 1 million motes within an area of 10 km2. Each mote is presumed to be single sensing and sampling vibration, pressure, temperature, or light. The project seeks to evaluate the scaling limits and challenges for deployment of a reliable (characterized by at least 99.9% reliability), frequently sensing (measuring levels every 10 secs), low power (7+ year lifetime power), secure wireless network (encrypted...

BPN559: Interfacing Smart Phones with Low Power Wireless Devices

Nahir Sarmicanic
Thomas Watteyne
2010

Interfacing smart phones with low power wireless radios enables the phone to interact with low power wireless devices such as individual motes of a wireless sensor network. Smart phones are ubiquitous and offer advanced user interface capabilities such as tilt sensor, accelerometer and touch screen. Combining both technologies opens up a whole new class of possibilities for a user to interact with low power wireless devices. The goal of this project is to develop applications for sending and receiving real time data to from wireless motes. This type of applications is not only useful...

BPN592: Workshop: Hands-On Intro to Low-Power Wireless Sensor Networking

Dr. Anita Flynn
Dr. Thomas Watteyne
Leo Keselman
2010

This IAB we have prepared a half-day tech-transfer workshop for industrial members teaching background, fundamentals, advantages and limitations associated with standards-based low-power sensor networks. Open standards are important because they allow technologies to gain traction and industries to blossom. Open-source reference implementations take things one step further. Because standard protocols invariably allow optional configurations, a reference implementation gives people a concrete example of how to get started. The proposed IEEE802.15.4e standard prescribes time...