Roya Maboudian (Advisor)

Research Advised by Professor Roya Maboudian

Won Seok (Lucas) Chi

Alumni
Professor Roya Maboudian (Advisor)
PostDoc 2017

BPN933: Ag@MIL-53 Core-Shell Nanostructures for SERS-Based Chemical Analysis

Aifei Pan
Yong Xia
Adrian K. Davey
2021

A large number of poisonous chemicals, such as PFOA, PFOS, and mercury ions, are mandated to be controlled in drinking water with their permissible concentrations below parts-per-billion (ppb). In this context, an increase in the concentration is a necessary step preceding detection. Apart from their selective absorption ability, metal-organic frameworks (MOFs) have an extraordinarily large internal surface area, which can be used for extraction. In terms of detection methods, Raman spectroscopy is a powerful non-invasive chemical detection technology characterized by portability,...

BPN964: Metal Oxide Heterostructure Nanowires for Gas Sensing Applications

Sikai Zhao
2021

Metal oxide semiconducting gas sensors are one of the most widely used gas sensing devices due to their low cost, high reliability, solid-state, and high response. While they have been employed for the detection of various gases and in many applications, several issues remain including their limited selectivity and humidity interference. As the core part of a semiconducting gas sensor, sensing materials play the key role in determining the sensing performance of the device, with the materials’ microstructure and surface properties being the dominant factors. Thus the primary...

Improved Hydrogen Sensitivity and Selectivity in PdO with Metal-Organic Framework Membrane

David Gardner
Xiang Gao
Hossain M. Fahad
Ali Javey
Carlo Carraro
Roya Maboudian
2020

Metal-organic frameworks (MOFs) are highly designable porous materials and are recognized for their exceptional selectivity as chemical sensors. However, they are not always suitable for incorporation with existing sensing platforms, especially sensing modes that rely on electronic changes in the sensing material (e.g., work-function response or conductometric response). One way that MOFs can be utilized is by growing them as a porous membrane on a sensing layer and using the MOF to affect the electronic structure of the sensing layer. In this paper, a proof-of-concept for...

Transistor‐Based Work Function Measurement of Metal‐Organic Frameworks for Ultra‐Low‐Power, Rationally Designed Chemical Sensors

David Gardner
Xiang Gao
Hossain M. Fahad
An-Ting Yang
Sam He
Ali Javey
Carlo Carraro
Roya Maboudian
2019

A classic challenge in chemical sensing is selectivity. Metal-organic frameworks (MOFs) are an exciting class of materials because they can be tuned for selective chemical adsorption. Adsorption events trigger work-function shifts, which can be detected with a chemical-sensitive field-effect transistor (power ≈microwatts). In this work, several case studies were used towards generalizing the sensing mechanism, ultimately towards our metal-centric hypothesis. HKUST-1 was used as a proof-of-principle humidity sensor. The response is thickness independent, meaning the response is...

Scalable Ultra Low-Power Chemical Sensing with Metal-Organic Frameworks

David Gardner
Xiang Gao
Hossain M. Fahad
An-Ting Yang
Sam He
Ali Javey
Carlo Carraro
Roya Maboudian
2019

This paper reports the innovative use of a highly tunable material, metal-organic frameworks (MOFs), for chemical sensing on an ultra-low-power platform based on a field-effect transistor. We demonstrate proof-of-principle devices functionalized with two MOFs: "HKUST-1" for humidity sensing and "ZIF-8" for reversible NO 2 detection. These devices show minimal drift, yield highly reproducible responses, recover rapidly, and have excellent selectivity. Through this approach, devices with minimal power draw and high selectivity could be widely distributed for continuous environmental and...

Amine-Functionalized Metal-Organic Framework ZIF-8 toward Colorimetric CO2 Sensing in Indoor Air Environment

Adrian K. Davey
Xiang Gao
Yong Xia
Zhou Li
Matthew N. Dods
Steven DelaCruz
Aifei Pan
Sanket Swamy
David Gardner
Carlo Carraro
Roya Maboudian
2021

Carbon dioxide (CO2) has been shown to contribute to human health consequences indoors, such as shortness of breath, nasal and optic irritation, dizziness, and nausea. In this work, we explore the potential of metal–organic frameworks (MOFs) as highly-porous, crystalline sorbents for sensitive colorimetric CO2 detection. In particular, the zeolitic imidazolate framework (ZIF-8) is chosen as the sorptive material due to its chemical stability and tunable CO2 affinity. The colorimetric gas sensor is developed in methanol with three components: (i) MOF ZIF-8 as a high surface area adsorbent...

Copper Oxide by Thermal Oxidation for Electrochemical Cells and Gas Sensors

Kevin Limkrailassiri
Liwei Lin
Costas Grigoropoulos
Roya Maboudian
2013

Advances in electrolytic and gas sensing technologies continue to be driven by careful selection and engineering of materials. Copper oxides—both cuprous oxide, Cu2O, and cupric oxide, CuO—are abundant, environmentally friendly, and highly versatile. An attractive feature unique to both copper oxides is the ease of synthesis through a one-step thermal oxidation of copper foil in ambient environment, yielding various oxide compositions and morphologies according to the oxidation temperature and time. There are many possible applications for the copper oxide...

Carbon Nanotube Films for Energy Storage Applications

Alina Kozinda
Liwei Lin
Roya Maboudian
Dorian Liepmann
2014

With the rising demands for small, lightweight, and long-lasting portable electronics, the need for energy storage devices with both large power and large eneergy densities become vitally important. From their usage in hybrid electric vehicles to wearable electronics, supercapacitors, and rechargeable batteries have been the focus of many previous works. Electrode materials with large specific surface areas can enhance the charning speed and total amount of stored energy. To this end, vertically self-aligned conductivities as well as high mechanical stregth and large specific surface areas...

Growth and Characterization of Silicon Carbide Thin Films and Nanowires

Lunet Luna
Roya Maboudian
Carlo Carraro
Jeffrey Reimer
Liwei Lin
2016

Silicon carbide (SiC) based electronics and sensors hold promise for pushing past the limits of current technology to achieve small, durable devices that can function in high-temperature, high- voltage, corrosive, and biological environments. SiC is an ideal material for such conditions due to its high mechanical strength, excellent chemical stability, and its biocompatibility. Consequently, SiC thin films and nanowires have attracted interest in applications such as micro- and nano-electromechanical systems, biological sensors, field emission cathodes, and energy storage devices....