Roya Maboudian (Advisor)

Research Advised by Professor Roya Maboudian

Maboudian Group:  List of Projects | List of Researchers

Dung-Sheng Tsai

Alumni
Professor Roya Maboudian (Advisor)
PostDoc 2018

Fang Liu

Alumni
Professor Roya Maboudian (Advisor)
PostDoc 2011

Arthur Montazeri

Alumni
Professor Roya Maboudian (Advisor)
PostDoc 2018

Sinem Ortaboy

Alumni
Professor Roya Maboudian (Advisor)
PostDoc 2017

Chuan-Pei Lee

Alumni
Professor Roya Maboudian (Advisor)
PostDoc 2017

Raphael Brechbuehler

Alumni
Chemical and Biomolecular Engineering
Professor Roya Maboudian (Advisor)
M.S. 2016

Won Seok (Lucas) Chi

Alumni
Professor Roya Maboudian (Advisor)
PostDoc 2017

BPN933: Ag@MIL-53 Core-Shell Nanostructures for SERS-Based Chemical Analysis

Aifei Pan
Yong Xia
Adrian K. Davey
2021

A large number of poisonous chemicals, such as PFOA, PFOS, and mercury ions, are mandated to be controlled in drinking water with their permissible concentrations below parts-per-billion (ppb). In this context, an increase in the concentration is a necessary step preceding detection. Apart from their selective absorption ability, metal-organic frameworks (MOFs) have an extraordinarily large internal surface area, which can be used for extraction. In terms of detection methods, Raman spectroscopy is a powerful non-invasive chemical detection technology characterized by portability,...

BPN964: Metal Oxide Heterostructure Nanowires for Gas Sensing Applications

Sikai Zhao
2021

Metal oxide semiconducting gas sensors are one of the most widely used gas sensing devices due to their low cost, high reliability, solid-state, and high response. While they have been employed for the detection of various gases and in many applications, several issues remain including their limited selectivity and humidity interference. As the core part of a semiconducting gas sensor, sensing materials play the key role in determining the sensing performance of the device, with the materials’ microstructure and surface properties being the dominant factors. Thus the primary...

Improved Hydrogen Sensitivity and Selectivity in PdO with Metal-Organic Framework Membrane

David Gardner
Xiang Gao
Hossain M. Fahad
Ali Javey
Carlo Carraro
Roya Maboudian
2020

Metal-organic frameworks (MOFs) are highly designable porous materials and are recognized for their exceptional selectivity as chemical sensors. However, they are not always suitable for incorporation with existing sensing platforms, especially sensing modes that rely on electronic changes in the sensing material (e.g., work-function response or conductometric response). One way that MOFs can be utilized is by growing them as a porous membrane on a sensing layer and using the MOF to affect the electronic structure of the sensing layer. In this paper, a proof-of-concept for...