Physical Sensors & Devices

Research that includes:

  • Silicon MEMS actuators: comb, electro-thermal, and plastic deformation
  • Precision electronic sensing and measurements of capacitive, frequency, and coulombic MEMS variables
  • Structures and architectures for gyroscopes, accelerometers, micro strain gauges for direct application to rigid structures e.g., steel, and levitated MEMS

BPN951: Berkeley Low-cost Interplanetary Solar Sail (BLISS)

Alexander Alvara
Bhuvan M. Belur
2024

Space exploration often costs multiple millions of dollars for each exploratory mission to get a single piece of equipment into orbit. These missions usually return information in the form of scans or images or samples in the form of extracted material. This work proposes the manufacture and deployment of thousands of imaging capable solar sails systems with 10 gram payloads. Power generation is enabled through solar panels and batteries. Navigation is enabled through one square meter solar sails maneuvered by inchworm motors. Communications are enabled by laser transmitters and SPAD...

BPNX1033: Multi-Objective Inverse Design of Impact Resistant Metamaterials Under Varying Strain Rates (New Project)

Anish Satpati
Marco Maurizi
2024

This work pertains to the multi-objective inverse design of impact-resistant metamaterials under varying strain rates. Impact-resistant materials are desirable in a wide range of applications, such as sports, automobiles, military, and aircraft, to name a few. Existing literature deals with refining these structures by performing quasi-static finite element (FE) simulations and then verifying them experimentally, which is a time-consuming and expensive process. Moreover, beyond the low-velocity regime, quasi-static simulations are not representative of real-world dynamic...

BPNX1029: Multi-Mode Multi-Direction High-Resolution Tactile Haptics and Sensing Duo-Functional Device using Piezoelectric Metamaterial (New Project)

William Dong
Zac Gwennap
Brandon Anthony
Cole Dunn
2024

Tactile haptics and sensing technology plays a crucial role in the AR/VR and medical robotics fields by providing touch input and feedback for human-computer interactions. However, many existing haptics technologies offer limited feedback— only in one direction (normal stress), very coarse resolution, and only on/off control. These limitations hinder the accurate recreation of touch sensations, particularly on sensitive areas like fingertips, due to restricted degrees of freedom and inadequate stress density. This device addresses these issues by offering tactile haptics and sensing with...

BPNX1035: Six-Axis Control of Electrostatically Levitated 1g Mass (New Project)

Hani Gomez
Yichen Liu
Alexander Alvara
2024

The research focus of this project is to design, fabricate and develop a six-axis controlled electrostatically levitated mass system. While electrostatic levitation has been demonstrated before, this project focuses on developing a smaller form factor (10cmx10cm), low power (0.5W), and higher mass (1g) system. The proof mass will be levitated using actuation electrodes: four top electrodes for levitation and control of z-axis position as well as rotation about x- and y-axes, and six side electrodes for control of x- and y-axis position and z-axis rotation. To achieve stability...

BPNX1034: pMUT Bone Age Sensing

Nikita Lukhanin
Fan Xia
Megan Teng
Bo Jiang
Jean-Daniel Zanone
2024

It has been well established that the bone age of a child can be estimated by using X-ray, CT, MRI, and other large medical imaging devices. While other less expensive and non-radioactive methodology use ultrasonography, these devices are bulky and often require trained technicians to use properly. This project introduces a low-cost, miniaturized device for bone age assessments by microelectromechanical system (MEMS) technologies in the form of a piezoelectric micromachined ultrasound transducer (pMUT). By integrating Aluminum nitride (AlN) into our 5 mm pMUT, we are capable of...

Lego-Like Reconfigurable Soft Haptic Array via Self-Healing Sensor/Actuator Modules

Peisheng He
Wenying Qiu
Yande Peng
Jong Ha Park
Qilong Cheng
David Bogy
Liwei Lin
2024

Soft haptic devices could enable unique applications in AR/VR, healthcare, and human-machine interface systems. Here, a versatile reconfigurable haptic system is proposed for different application scenarios at diverse anatomical locations and body shapes. Lego toys are the inspiration of the module concept where individual haptic modules can be cut, reconfigured, and reconnected as a new system in the ambient environment repeatedly.

Each module consists of the basic building block of flexible selfhealable ion-conducting and insulating layers....

A Non-Wolatile Surface Tension-Driven Electricochemical Liquid Metal Actuator

Xiaohang Chen
Zihan Wang
Wei Yue
Peisheng He
Liwei Lin
2024

We present a surface-tension driven electrochemical liquid metal (LM) actuator without the gas-producing sidereaction and capable of fabrication/operation in ambient air for practical applications. A hybrid supercapacitor is introduced to inhibit the common counter electrode side reactions, and the use of quasi-solid-state ionic hydrogel instead of liquid electrolyte further enables non-volatile operations. A 2×4 LM droplet array is demonstrated to actuate by a low driving voltage of 3.5 V for a maximum force of ~8.5 mN and a displacement of 0.56 mm in only 1.75 s. With the favorable...

BPNX1031: Scalable Infrared Photodetectors based on Large-Grain Tellurium Film (New Project)

Hyong Min Kim
Naoki Higashitarumizu
2024

Tellurium is a narrow-gap, p-type semiconductor with promising potential for future electronic and optoelectronic devices. Te’s band gap can be tuned from 0.31 eV in bulk form to 1.04 eV in monolayer form. Unlike many other competing 2D semiconductors, Te is air-stable and can be deposited on a substrate of choice by thermal evaporation or solution synthesis. Photodetectors based on solution-synthesized Te nanoflakes have already been demonstrated, with specific detectivity in near-IR at or above 10^9 Jones. However, solution-synthesis of Te nanoflakes is not scalable, and...

BPN743: Highly Responsive pMUTs

Peggy Tsao
Megan Teng
Hanxiao Liu
Yande Peng
2024

Ultrasonics has been realized as a nondestructive measurement method for a variety of applications, such as medical imaging, healthcare monitoring, structural testing, range finding, and motion sensing. Furthermore, high intensity ultrasound can be used in therapeutic treatments, such as lithotripsy for kidney stone comminution, hyperthermia for cancer therapy, high-intensity focused ultrasound (HIFU) for laparoscopic surgery and transcranial sonothrombolysis for brain stroke treatment. MEMS ultrasonic transducers are known to have several pronounced advantages over the conventional...

BPNX1019: 3D Printing of Piezoelectric Materials and their US Transducers & Sensor Applications

Haotian Lu
Victor Couedel
2024

The performance of ultrasonic transducers is largely determined by the piezoelectric properties and geometries of their active elements. Due to the brittle nature of piezoceramics, existing processing tools for piezoelectric elements only achieve simple geometries, including flat disks, cylinders, cubes and rings. While advances in additive manufacturing give rise to free-form fabrication of piezoceramics, the resultant transducers suffer from high porosity, weak piezoelectric responses, and limited geometrical flexibility. We introduce optimized piezoceramic printing and...