Physical Sensors & Devices

Research that includes:

  • Silicon MEMS actuators: comb, electro-thermal, and plastic deformation
  • Precision electronic sensing and measurements of capacitive, frequency, and coulombic MEMS variables
  • Structures and architectures for gyroscopes, accelerometers, micro strain gauges for direct application to rigid structures e.g., steel, and levitated MEMS

BPN842: Conductometric Gas Sensing Behavior of WS2 Aerogel

Wenjun Yan
2016

The gas sensing characteristics of a high surface area tungsten disulfide (WS2) aerogel are investigated. Gas sensors are fabricated by integrating a low-density WS2 aerogel onto a low power polysilicon microheater platform to provide control over the operating temperature. The response of the WS2 aerogel-based sensors to NO2, O2, and H2 is investigated with the sensing characteristics indicating p-type behavior. The optimum sensing temperature is found to be about 250 ℃;, when considering sensitivity, power consumption and response time. The role of O2 in H2 and NO2 sensing is...

BPN808: Acoustic Detection of Neural Activity

Konlin Shen
2016

There is a need for non-invasive methods of neural probing without genetic modification for both clinical and scientific use. It has been found that action potentials are accompanied by small nanometer-scale membrane deformations in firing neurons. These mechanical waves, known as “action waves”, travel down axons in concert with action potentials and could be used to determine neuronal activity. Because acoustic waves are far less lossy in the brain than electromagnetic waves, we believe it may be possible to detect action waves from neurons up to 4 millimeters away with a...

BPN812: Improving Micro-Oscillators Performance By Exploiting Nonlinearity

Martial Defoort
2016

Due to their small size, micro-sensors experience complex phenomena including the emergence of nonlinearities, affecting the intrinsic properties of the system and commonly known to reduce its performance. In the case of micro-resonators, while larger displacement typically leads to lower SNR, it also increases the nonlinearity of the system, altering both frequencies and quality factors which in turn decrease stability and thus performance. However, a careful control of these nonlinearities opens the way for new implementation schemes and improved stability in micro-sensors, such as...

BPN731: Flexible Electrodes and Insertion Machine for Stable, Minimally-Invasive Neural Recording

Timothy L. Hanson
2016

Current approaches to interfacing with the nervous system mainly rely on stiff electrode materials, which work remarkably well, but suffer degradation from chronic immune response due to mechanical impedance mismatch and blood-brain barrier disruption. This current technology also poses limits on recording depth, spacing, and location. In this project we aim to ameliorate these issues by developing a system of very fine and flexible electrodes for recording from nervous tissue, a robotic system for manipulating and implanting these electrodes, and a means for integrating electrodes...

BPN747: Electronic Skin: Fully Printed Electronic Sensor Networks

Kevin Chen
2016

Large area networks of sensors which are flexible and can be laminated conformally on nonplanar surfaces can enable many different applications in areas such as prosthetics, display technology, and remote stimuli monitoring. For large area applications, printed electronics are favorable over traditional photolithography and shadow mask technology from a cost and throughput point of view and we demonstrate proof-of-concept for such a printed “electronic skin” system by printing a carbon nanotube based thin film transistor (TFT) active matrix backplane using a reverse roll to plate...

BPN802: Electret-Enabled Energy Harvesters for Use Near Current-Carrying Conductors

Zhiwei Wu
2017

The purpose of this project is to employ long-lived electrets in energy harvesters for use on power lines.

Project end date: 02/08/17

BPN603: Micro Rate-Integrating Gyroscope

Parsa Taheri-Tehrani
2017

The goal of this project is to realize a micro rate-integrating gyroscope that produces an output signal proportional to rotation angle rather than rotation rate. This device would eliminate the need of integrating the gyroscope's rate output to obtain the angle. Gyroscope resonators have at least two resonant modes that can be coupled by Coriolis force. Difference in damping coefficients and stiffness of the resonant modes of the MEMS resonator known as anisodamping and anisoelasticity are main sources of error in RIG. So realizing a micro rate-integrating gyroscope can be achieved...

BPN599: MEMS Electronic Compass: Three-Axis Magnetometer

Soner Sonmezoglu
2017

High sensitivity, low cost, low power, and direct integration with MEMS inertial sensors, such as accelerometers and gyroscopes, make the MEMS magnetic sensor a very attractive option in consumer electronic devices. The goal of this project is to develop a low-power three axis MEMS magnetic sensor suitable for use as an electronic compass in smart phones and portable electronics. Our objective is to achieve a resolution of 100 nT/rt-Hz and power consumption of 0.1 mW/axis with DC power supply of 1.8 V. Although past devices designed by our group have demonstrated that our resolution...

BPN714: Impedance Sensing Device to Monitor Pressure Ulcers

Amy Liao
Monica C. Lin
2018

Chronic cutaneous wounds affect millions of people each year and take billions of dollars to treat. Formation of pressure ulcers is considered a "never event" - an inexcusable, adverse event that occurs in a healthcare setting. Current monitoring solutions (pressure-distributing beds, repositioning patients every few hours, etc) are very expensive and labor intensive. In response to this challenge, we are developing a novel, flexible monitoring device that utilizes impedance spectroscopy to measure and characterize tissue health, thus allowing physicians to objectively monitor...

BPN838: Dosimetry Dust: An Implantable Dosimeter for Proton Beam Therapy Treatment of Ocular Melanomas

Stefanie V. Garcia
2017

Proton beam therapy is a well-established medical procedure for treating certain kinds of cancer, and is uniquely suited for treatment of head, neck, and eye tumors. In order to effectively treat a patient’s tumor, medical physicists have developed various simulations to model proton interactions with tissue and create a patient specific treatment plan that determines optimal gaze angles, the depth of penetration, and width of the spread-out-Bragg Peak necessary to encompass the target tumor. Despite the continuous improvements in medical physics treatment plan simulations, improper...