NanoTechnology: Materials, Processes & Devices

Research that includes:

  • Development of nanostructure fabrication technology
  • Nanomagnetics, Microphotonics
  • CMOS Integrated Nanowires/Nanotubes (CMOS-Inn)

Amine-Functionalized Metal-Organic Framework ZIF-8 toward Colorimetric CO2 Sensing in Indoor Air Environment

Adrian K. Davey
Xiang Gao
Yong Xia
Zhou Li
Matthew N. Dods
Steven DelaCruz
Aifei Pan
Sanket Swamy
David Gardner
Carlo Carraro
Roya Maboudian

Carbon dioxide (CO2) has been shown to contribute to human health consequences indoors, such as shortness of breath, nasal and optic irritation, dizziness, and nausea. In this work, we explore the potential of metal–organic frameworks (MOFs) as highly-porous, crystalline sorbents for sensitive colorimetric CO2 detection. In particular, the zeolitic imidazolate framework (ZIF-8) is chosen as the sorptive material due to its chemical stability and tunable CO2 affinity. The colorimetric gas sensor is developed in methanol with three components: (i) MOF ZIF-8 as a high surface area adsorbent...

BPN492: Integrated Microfactory for Nanostructure Synthesis

Eric Lee
SoonGweon Hong

A microfluidic device for high-throughput synthesis of silver and gold nanostructures will be developed. We will design and fabricate microsystems that can simultaneously perform hundreds of reaction conditions on one chip with extreme precision and control. This will greatly improve the tunability of each reaction condition allowing for us to tailor the reaction conditions to synthesize nanostructures with controllable plasmon shifts. Hollow metal particles will be prepared based on a galvanic replacement reaction, which is a method driven by the electrical potential difference...

BPN399: Parallel Assembly of Nanowires using Lateral Optoelectronic Tweezers (LOET)

Steven Neale

Lateral Optoelectronic Tweezers (LOET) patterns a lateral electrical field by selectively illuminating a thin photoconductive film between two metal electrodes. The resulting electrical gradients can be used to manipulate nanowires by dielectrophoresis (DEP). The goals of this project are to use this force to position, orientate and then assemble nanowires into arbitrary patterns.

Project end date: 08/11/09

BPN463: Controlled Nanoscale Doping of Semiconductors via Molecular Monolayers

Johnny C. Ho

One of the major challenges towards scaling down of the electronic devices to the nm-regime is attaining controlled doping of semiconductor materials with atomic accuracy. At such small scales, the various existing technologies suffer from a number of setbacks, including an inability to achieve junction abruptness down to nm range, stochastic distribution of the dopant atoms, crystal damage, and incompatibility with nanomaterials. In this work, We report the formation of sub-5 nm ultrashallow junctions in 4” Si wafers enabled by the molecular monolayer doping of phosphorous and...

BPN501: Patterned Contact Printing with Monolayer for Aligned Nanowire Arrays

Toshitake Takahashi
Kuniharu Takei
Johnny C. Ho
Zhiyong Fan

Large-area, patterned printing of nanowires by using fluorinated self-assembled monolayers (SAM) as the resist layer is demonstrated. By projecting a light pattern on the surface of the monolayer-resist in an oxygen rich environment, sticky and non-sticky regions on the surface are directly defined in a single-step process which then enables the highly specific and patterned transfer of the nanowires by the contact printing process, without the need for a subsequent lift-off step. This work demonstrates a simple route toward scalable, patterned printing of nanowires on substrates by...

BPN503: MEMS Poly/Nano: Compact, Organic RRAM for Transparent and Flexible Electronic Application

Nuo Zhang

The goal of this project is to build a compact, transparent, polymeric resistive random access memory (RRAM) on a flexible substrate. This novel device is based on the concept of resistive switching characteristics which have already been demonstrated in many materials. The typical structure of this device is a sandwich of two metal layers separated by a functionalized insulator. This technology will enable the development of low-cost, highly reliable, high density,polymer-based nonvolatile memory devices which can be implemented in various transparent and flexible electronic systems...

BPN556: NiO-Based LED Fabrication

Xiaobo Zhang
Kuniharu Takei

NiO is a p-type semiconductor material with band gap about 3.7 eV. It has been fabricated in the form of film by several methods, including electrodeposition[1], pulse laser deposition[2], and ion beam assisted e-beam evaporation[3]. Its applications have been limited to Nickel-ion battery, catalysts and rechargeable batteries. Very little interest and effort was put in its photoelectric applications such as light emission diodes which is primarily due to the poor quality of NiO made by the previously mentioned methods[4]. Here we are to utilize heterostructures made by p-type NiO...

BPN525: Hybrid Core-Multishell Nanowire Forests for Electrical Connector Applications

Rehan Kapadia

Electrical connectors based on hybrid core-multishell nanowire forests that require low engagement forces are demonstrated. The physical binding and electrical connectivity of the nanowire electrical connectors arise from the van der Waals interactions between the conductive metallic shells of the engaged nanowire forests. Specifically, the nanofibrillar structure of the connectors causes an amplification of the contact area between the interpenetrating nanowire arrays, resulting in strong adhesion with relatively low interfacial resistance. The nanowire electrical connectors may...

BPN526: Semiconducting Nanopillars for Photodiodes

Rehan R. Kapadia
Zhiyong Fan
Daniel Ruebusch

The ability to grow high-quality, vertically oriented, single-crystalline nanopillar arrays non-epitaxially enables the fabrication of novel and potentially highly-efficient opto-electronic devices on arbitrary substrates. This project aims to exploit the optical and electronic properties of these structures to fabricate highly sensitive photodiodes on low-cost substrates. In addition, photodiodes will be fabricated from multiple semiconductor materials to explore devices sensitive to different wavelength ranges.

Project end date: 08/09/10

BPN532: Sub-5 nm-wide Junction Formation by Monolayer Doping

Hui Fang
Kuniharu Takei
Johnny Ho

We have previously created a new doping method of semiconductor-monolayer doping (MLD). This method can fulfill the need of the shrinking size of devices by making ultra shallow junctions. More importantly, it causes much less lattice damage in the crystal than conventional ion-implantation technique. In this project, we are going to apply MLD to sub-5 nm-wide patterned lines (by the e-beam lithography), which is very essential to achieve future nanoscale VLSI. The doping profile will be characterized by C-V measurement.

Project end date: 08/10/10