Kristofer S.J. Pister (Advisor)

Research Advised by Professor Kristofer S.J. Pister

Pister Group:  List of Projects | List of Researchers

BLISS: Interplanetary Exploration with Swarms of Low-Cost Spacecraft

Alexander Alvara
Lydia Lee
Emmanuel Sin
Nathan Lambert
Andrew Westphal
Kristofer S.J. Pister
2024
Leveraging advancements in micro-scale technology, we propose a fleet of autonomous, low-cost, small solar sails for interplanetary exploration. The Berkeley Low-cost Interplanetary Solar Sail (BLISS) project aims to utilize small-scale technologies to create a fleet of tiny interplanetary femto-spacecraft for rapid, low-cost exploration of the inner solar system. This paper describes the hardware required to build a ∼10 g spacecraft using a 1 m2 solar sail steered by micro-electromechanical systems (MEMS) inchworm actuators. The trajectory control to a NEO, here 101955 Bennu, is detailed...

Omar Alkendi

Undergraduate Researcher
Electrical Engineering and Computer Sciences
Professor Kristofer S.J. Pister (Advisor)
B.S. 2023

BPN956: Time-of-Flight Hardware for the Solar Probe ANalyzer for Ions (SPAN-Ion)

Omar Alkendi
Lydia Lee
2023

Monitoring and building our understanding of space weather is necessary to protect current and future astronauts and hardware, as well as further our understanding of its effects on atmospheric development and loss. This project has developed two radiation-hardened sensor frontends to measure the ion composition of the solar wind aboard the Solar Probe ANalyzer for Ions (SPAN-Ion). SPAN-Ion uses time-of-flight mass spectrometry to distinguish ions by their mass: charge ratios; the target architecture for future missions decreases mass and increases speed in exchange for several orders of...

Hydrogel Actuated Carbon Fiber Microelectrode Array

Oliver Chen
Michel M. Maharbiz
Kristofer S. J. Pister
2023

Glial passivation and subsequent electrical insulation of implantable microelectrodes is a major bottleneck for long-term viability of neural probes. Self-deploying microelectrodes have been developed to minimize glial scarring and adverse biological effects near neural recording sites, but typically suffer from low electrode densities and deployment distance.

In this dissertation, we propose and evaluate a large displacement, self-deploying architecture using a water absorbing hydrogel to extrude a high density carbon fiber array out of a microfabricated shuttle. To enable mm-scale...

Yu-Chi Lin

Graduate Student Researcher
Electrical Engineering and Computer Sciences
Professor Kristofer S.J. Pister (Advisor)
Ph.D. 2027 (Anticipated)

Yu-Chi Lin is a third-year Ph.D. student, working with Prof. Ali Niknejad and Prof. Kris Pister, at Berkeley Wireless Research Center (BWRC) and Berkeley Sensor & Actuator Center (...

Alex Moreno

Graduate Student Researcher
Electrical Engineering and Computer Sciences
Professor Kristofer S.J. Pister (Advisor)
Ph.D. 2023
M.S. 2021

Alex Moreno received the B.S.E.E degree from the University of Texas at Dallas in 2017 and his M.S. in EECS from the University of California, Berkeley in 2021. He was awarded the NSF GRFP and UC Berkeley Chancellor's Graduate Fellowship in 2017. His research interests include low power wireless radios, mircorobotics and localization.

Mauricio J. Bustamante

Graduate Student Researcher
Electrical Engineering and Computer Sciences
Professor Michel M. Maharbiz (Advisor)
Professor Kristofer S.J. Pister (Advisor)
Ph.D. 2023

BPN970: Rotary Inchworm Motor for Underwater Microrobot Propulsion

Mauricio J. Bustamante
2023

Autonomous swimming microrobots for biomedical applications and distributed sensing require locally controllable swimming mechanisms. This project aims to develop underwater, rotary electrostatic inchworm motors for artificial flagella. Our proposed design uses gap closing actuators with an angle arm design, similar to existing inchworm motors, to drive a central rotor, all fabricated with an SOI process. An artificial flagella is attached the rotor, converting the rotational motion into propulsion. Major challenges include efficient operation of electrostatic motors underwater and...

Lydia Lee

Graduate Student Researcher
Electrical Engineering and Computer Sciences
Professor Kristofer S.J. Pister (Advisor)
Ph.D. 2023

Lydia received her B.S. in Electrical Engineering & Computer Sciences from UC Berkeley in 2017. She is currently pursuing a PhD in integrated circuits under the supervision of Prof. Kris Pister and is expected to graduate in 2023.

Lydia's Publications via Google Scholar

Lydia's LinkedIn