A micromechanical structure for on-chip strain sensing maps strain-induced gap changes to resonance frequency shifts while employing differential strategies to null out bias uncertainty, all towards repeatable measurement of sub-nm displacement changes that equate to sub- strain increments. The key enabler here is the use of gap-dependent electrical stiffness to shift resonance frequencies as structural elements stretch or shrink to relieve stress. An output based on the difference frequency between two close proximity structures with unequal stress arm lengths (cf. Fig. 1) removes uncertainty on the initial gap spacing and permits a 206 Hz/ scale factor. The ability to precisely measure the frequency of the high-Q (~4000) structures, down to at least 1 Hz, puts the resolution of this sensor at least 5 n (or 790 Pa for polysilicon). An on-chip highly sensitive strain sensing device like this will likely be instrumental to managing stress changes over the lifetime of micromechanical circuits, such as oscillators and filters.
Abstract:
Publication date:
July 19, 2020
Publication type:
Conference Paper (Proceedings)
Citation:
A. Ozgurluk and C. T.-C. Nguyen, “Precision residual strain sensor employing gap-dependent frequency shift,” Proceedings, IEEE Joint Conf. of the IEEE Int. Frequency Contr. Symp. & IEEE Int. Symp. on Applications of Ferroelectrics, Virtual Conference, July 19-23, 2020, DOI: 10.1109/IFCS-ISAF41089.2020.9234911.
*Only registered BSAC Industrial Members may view project materials & publications. Click here to request member-only access.