BSAC Seminar: Microfluidic Single-Cell Analysis of Cellular Information Processing

October 1, 2013

Prof. Savas Tay

Department of Biosystems Science and Engineering, ETH Zürich
October 1, 2013 | 12:30 to 01:30 | 540 Cory Hall
Host: Luke Lee

Immune cells constantly receive signaling inputs such as pathogen-emitted molecules, use gene regulatory pathways to process these signals, and generate outputs by secreting signaling molecules. Characterizing the input-output relationship of a biological system helps to understand its regulatory mechanisms and allows building models to predict how the system will operate in complex physiological scenarios - a primary goal for Systems Immunology. A major obstacle has been the so-called “biological noise,” or significant variability in molecular parameters between cells. Each cell contains its own time-dependent composition of pathway components (e.g., RNA and proteins) generating distinct, time-varying outputs for the exact same inputs. Such variability makes time-dependent single-cell analysis crucial in understanding how biological systems operate. Single-cell dynamical analysis, however, has been a low-throughput, and at best, semi-quantitative method due to technical challenges in isolating, manipulating and measuring individual cells. I will talk about how we address these limitations by developing automated, high-throughput, microfluidic/optofluidic single-cell analysis systems with unprecedented capabilities and measurement accuracy, and how we use them in understanding immune cell coordination during response to infection. Our recent efforts have resulted in a new set of technologies, helping solve some of the most puzzling problems in Systems Immunology and Cell Signaling. These include microfluidic systems to measure cytokine secretion dynamics from single-cells under complex time-varying signaling inputs, a high-throughput cell culture system that creates programmable diffusion-based chemical gradients, a chip to measure cell-cell communication via secreted factors, and a new method for digital quantification of proteins and nucleic acids (mRNA and DNA) in the same cell. In addition to new technologies, I will also talk about newly obtained biological insight from our measurements and modeling efforts on how single-cells detect and encode dose and frequency information using the immune pathway NF-κB, and how they create dynamic cytokine outputs under inflammatory stimuli. A primary goal in this combined technology/cell biology effort is to develop a computer model of tissue-level immune response through the NF-κB pathway, with particular focus on cytokine signal propagation mechanism (e.g., diffusion vs. waves), speed, range and duration. 

microfluidics.ethz.ch

Interested in nominating someone to speak at the BSAC Technology Seminar? We welcome you to submit a speaker nomination here

Watch this BSAC Technology Seminar

BSAC Technology Seminar Series

BSAC Technology Seminar Series
Hosted by Berkeley Sensor & Actuator Center
bsac.berkeley.edu

Upcoming Events

BSAC Technology Seminar Committee

Jonathan Candelaria
Dalene Schwartz Corey