Prof. Brian Cunningham
Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign
November 5, 2013 | 12:30 to 01:30 | 540 Cory Hall
Host: Luke Lee
Biology is increasingly a science that relies upon new developments in sensor engineering to provide detailed information about cell function, to perform disease diagnosis, to quantify gene expression, and to image tissue. Of the many transduction methods available for applications including point-of-care diagnostics, personalized medicine, and medical imaging, approaches based upon optics have had a tremendous impact due to a combination of non-invasiveness, robustness, miniaturization, and low cost. This presentation will describe recent developments in the Nano Sensors Group at the University of Illinois at Urbana-Champaign in the design, fabrication, and application of optical biosensors. For portable biosensing applications, we have demonstrated the use of the internal camera of a smartphone as a high resolution spectrophotometer for performing a variety of label-free and label-based assays. For biosensing applications in pharmaceutical research, we have developed label-free biosensors based upon external cavity lasers that are capable of detecting small molecule drugs binding to large proteins by detecting picometer-scale changes in the lasing wavelength. The talk will describe a new microscope imaging modality called "Photonic Crystal Enhanced Microscopy" that is capable of imaging and quantifying the strength of cell attachment to a PC biosensor surface with sub-cell spatial resolution, that is being used to study fundamental processes including chemotaxis, proliferation, and stem cell differentiation. The ability of nanostructured surfaces such as photonic crystals or arrays of metal nanodomes to generate spatially confined, high intensity electromagnetic hot spots is being used to enhance the output of surface-enhanced Raman scattering for drug molecules, and surface-based fluorescence assays for cancer biomarker proteins. Such nanostructures can be inexpensively manufactured from plastic, glass, or silicon to enable single-use applications, such as incorporating sensors into intravenous drug delivery tubing, or rapid multiplexed disease biomarker testing using only a droplet of serum. Finally, we have recently demonstrated the application of narrowband resonant optical filters operating in the infrared spectrum as a new histological imaging modality, called Discrete Frequency IR absorption spectroscopy, for rapid chemical imaging for applications in pathology and forensics. These projects represent only a narrow slice of the potential for optics-based sensors in research and medical practice, but serve to demonstrate the tremendous potential for utilizing light-matter interactions in the life sciences.
nano.ece.illinois.edu(link is external)
Interested in nominating someone to speak at the BSAC Technology Seminar? We welcome you to submit a speaker nomination here(link is external)