Xiaoyu (Rayne) Zheng (Advisor)

Research Advised by Professor Xiaoyu (Rayne) Zheng

Zheng Group:  List of Projects | List of Researchers

BSAC's Best: Fall 2024 Awards Announced

September 19, 2024

BSAC is pleased to announce the outstanding paper and presentation award recipients from the Fall 2024 Research Review on September 18th. The Industrial Advisory Board was highly impressed by the quality of research, and the recipients’ work stood out in a competitive field.

We sincerely thank all the researchers who presented their innovative projects. These contributions are key to advancing research and fostering collaboration between academia and industry.

After careful evaluation, BSAC Industrial Members have voted, and we congratulate the Fall 2024 Best of BSAC honorees...

3D Printing of Architected Hydrophones

Victor Couedel
2024
Fall 2024 BSAC Research Review Presentation View Presentation View Slides Winner: Best Oral Presentation (Fall 2024)...

BPNX1015: Ultra-Light Antennas via Charge Programmed Deposition Additive Manufacturing

Ju Young Park
2024

Multi-material printing employing charge-programmed material is utilized for phase array antenna fabrication, showcasing an ultra-lightweight RF phase array. Significant weight reduction is achieved through selective dielectric material printing. Our approach enables complex electronic device fabrication in one step, utilizing a mosaic of surface charge regions to deposit functional materials with precision. We demonstrate the inherently complex manufacturing process via homogeneous diffusion and fluid dynamics control.

Project is currently...

BPNX1021: Realizing Three-Dimensional Alignment of Two-Dimensional Material for Isotropic Properties Enhancement via Embedded Direct Ink Writing (New Project)

Qiyi Chen
2024

The orientation of fibrous fillers, induced by shear forces during extrusion, has been demonstrated to significantly enhance mechanical properties, electrical/thermal conductivity, microwave attenuation etc., albeit primarily in a two-dimensional (2D) x-y plane. In this study, we present a novel approach for achieving fiber alignment in a three-dimensional (3D) context, with an emphasis on the Z-direction, by utilizing embedded 3D printing techniques. This process involves the extrusion and suspension of composite inks within a viscoelastic gel medium, during which the...

BPNX1018: Free Surface Investigation in Large-Area Projection Micro Stereolithography (New Project)

David Hahn
2024

This project seeks to additively manufacture micro-architected cellular solids in high resolution, large area in hundreds of millimeters, containing millions of unit cells which are defect-free.

Project is currently funded by: Federal

Project ended 08/31/2024

BPNX1033: Multi-Objective Inverse Design of Impact Resistant Metamaterials Under Varying Strain Rates (New Project)

Anish Satpati
Marco Maurizi
2024

This work pertains to the multi-objective inverse design of impact-resistant metamaterials under varying strain rates. Impact-resistant materials are desirable in a wide range of applications, such as sports, automobiles, military, and aircraft, to name a few. Existing literature deals with refining these structures by performing quasi-static finite element (FE) simulations and then verifying them experimentally, which is a time-consuming and expensive process. Moreover, beyond the low-velocity regime, quasi-static simulations are not representative of real-world dynamic...

BPNX1029: Multi-Mode Multi-Direction High-Resolution Tactile Haptics and Sensing Duo-Functional Device using Piezoelectric Metamaterial (New Project)

William Dong
Zac Gwennap
Brandon Anthony
Cole Dunn
2024

Tactile haptics and sensing technology plays a crucial role in the AR/VR and medical robotics fields by providing touch input and feedback for human-computer interactions. However, many existing haptics technologies offer limited feedback— only in one direction (normal stress), very coarse resolution, and only on/off control. These limitations hinder the accurate recreation of touch sensations, particularly on sensitive areas like fingertips, due to restricted degrees of freedom and inadequate stress density. This device addresses these issues by offering tactile haptics and sensing with...

BPNX1019: 3D Printing of Piezoelectric Materials and their US Transducers & Sensor Applications

Haotian Lu
Victor Couedel
2024

The performance of ultrasonic transducers is largely determined by the piezoelectric properties and geometries of their active elements. Due to the brittle nature of piezoceramics, existing processing tools for piezoelectric elements only achieve simple geometries, including flat disks, cylinders, cubes and rings. While advances in additive manufacturing give rise to free-form fabrication of piezoceramics, the resultant transducers suffer from high porosity, weak piezoelectric responses, and limited geometrical flexibility. We introduce optimized piezoceramic printing and...

BPNX1017: 3D Printing of Functional Materials

Zhen Wang
2024

3D printing enables the fabrication of 3D functional materials with complex structures associated to various functionalities. Developing 3D printing resins with different properties promises to fabricate a myriad of complex functional devices with e.g., self-sensing, actuation, and structural elements assembled in a designed 3D layout. In this project, we explore the achievable property space and the material-performance correlation of 3D printing by designing a series of photo-curable resins. We unveil how the functional groups of the resins synergistically impact the...

BPNX1013: 3D Printing of Architected Hydrophones

Victor Couedel
Haotian Lu
2024

Piezoelectric hydrophones are crucial for underwater applications such as communication and seafloor mapping. Limited by the brittleness of piezoelectric ceramics, conventional manufacturing methods restrict hydrophones’ shapes to simple geometries such as disks, cylinders, or spheres, which limits the sensitivity, directivity pattern, and working frequency bandwidth of the device.


We are developping a new class of high-performance 3D printed piezoelectric hydrophones consisting of rationally designed micro-architectures. Using a high-
...