Publications

FMCW Lidar: Scaling to the Chip-Level and Improving Phase-Noise-Limited Performance

Phillip Sandborn
Ming C. Wu
Bernhard Boser
Kristofer S.J. Pister
Liwei Lin
2017

Lidar (light detection and ranging) technology has the potential to revolutionize the way automated systems interact with their environments and their users. Most lidar systems in the industry today rely on pulsed (or, "time-of-flight") lidar, which has reached limits in terms of depth resolution. Coherent lidar schemes, such as frequency-modulated continuous-wave (FMCW) lidar, offer significant advantage in achieving high depth resolution, but are often too complex, too expensive, and/or too bulky to be implemented in the consumer industry. FMCW, and its close cousin, swept-source optical...

Wireless Power Monitoring at Plugs and Panels

Michael Lorek
Kristofer S.J. Pister
Michel M. Maharbiz
Paul Wright
2015

In 2012, electricity generation was responsible for over 30% of carbon emissions in the US - surpassing the transportation sector - and predictions to 2040 show this trend continuing with current technologies. Electrical submetering provides improved spatial and temporal resolution into how buildings use their energy, and case studies have shown that improvements driven by submetering data can lead to 5-30% reductions in electrical energy usage. However, traditional building submetering technologies present unfavorable cost, installation, and form factor attributes that inhibit the...

High-Q MEMS Capacitive-Gap Resonators for RF Channel Selection

Lingqi Wu
Clark T.-C. Nguyen
Tsu-Jae King Liu
Liwei Lin
2015

On chip capacitive-gap transduced micromechanical resonators constructed via MEMS technology have achieved very high Q’s at both VHF and UHF range, making them very attractive as on-chip frequency selecting elements for filters in wireless communication applications. Still, there are applications, such as software-defined cognitive radio, that demand even higher Q’s at RF to enable low-loss selection of single channels (rather than bands of them) to reduce the power consumption of succeeding electronic stages down to levels more appropriate for battery-powered handhelds. This...

Capacitive-Gap MEMS Resonator-Based Oscillator Systems for Low-Power Signal Processing

Thura Lin Naing
Clark T.-C. Nguyen
Ali Javey
Liwei Lin
2015

Wireless technology, which already plays a major part in our daily lives, is expected to further expand to networks of billions of autonomous sensors in coming years: the so-called Internet of Things. In one vision, sensors employing low-cost, low-power wireless motes collect and transmit data through a mesh network while operating only on scavenged or battery power. RF MEMS provides one approach to the stringent power and performance required by sensor networks.

This dissertation presents improvement to these MEMS technologies and introduces new approaches for wireless...

Novel Processing Schemes for Material Systems on Amorphous and Flexible Substrates

Kevin Chen
Ali Javey
Ming C. Wu
Daryl Chrzan
2017

With the rise of the Internet of Things (IOT), demand for novel devices and sensors for a variety of applications has exploded, and as a result, there is a need for the development of new processing schemes and materials systems to accommodate the expanding needs of these applications. In particular,

Chapter 2 explores the growth of III-V semiconductors with quality approaching that of epitaxial thin films directly onto amorphous substrates using a new growth mode known as template liquid phase (TLP) crystal growth. The fundamental theory and limitations of TLP...

Interface Electronics for Ultrasonic Transducers

Hao-Yen Tang
Bernhard E. Boser
David A. Horsley
Liwei Lin
2016

Ultrasound has long been used for medical imaging. Recent advances of miniaturized MEMS ultrasonic transducers new applications such as gesture recognition, personal fitness devices, and fingerprint sensors. These devices are considerably smaller than conventional transducers. To benefit from their lower excitation power requirements and address the reduced sensitivity requires the design of novel interface electronic circuits.

The first part of this thesis describes new circuits capable of generating all the high voltage drive signals for MEMS transducers on-chip from a single low...

Non-Epitaxial Thin-Film Indium Phosphide Photovoltaics: Growth, Devices, and Cost Analysis

Maxwell Zheng
Ali Javey
Ming C. Wu
Roya Maboudian
2015

In recent years, the photovoltaic market has grown significantly as module prices have continued to come down. Continued growth of the field requires higher efficiency modules at lower manufacturing costs. In particular, higher efficiencies reduce the area needed for a given power output, thus reducing the downstream balance of systems costs that scale with area such as mounting frames, installation, and soft costs. Cells and modules made from III-V materials have the highest demonstrated efficiencies to date but are not yet at the cost level of other thin film technologies, which...

CMOS Magnetic Particle Flow Cytometer

Pramod Murali
Bernhard E. Boser
Ali M. Niknejad
Luke P. Lee
2015

Neutrophils, a class of white blood cells, are our body’s first line of defense against invading pathogens. When the number of neutrophils in blood drops to 200cells/$\mu$L, it leads to a critical clinical condition called neutropenia. Currently, optical flow cytometry is the most common and powerful technique used to diagnose neutropenia, but the centralized nature of the test, time-consuming sample preparation and high cost prevent real-time modification of treatment regimens.

In this thesis, we propose an approach of using magnetic labels to tag and detect cells that allows us...

High-Q AlN Contour Mode Resonators with Unattached, Voltage-Actuated Electrodes

Robert Schneider
Clark T.-C. Nguyen
Kristofer S.J. Pister
Liwei Lin
2015

High-Q narrowband filters at ultra-high frequencies hold promise for reducing noise and suppressing interferers in wireless transceivers, yet research efforts confront a daunting challenge. So far, no existing resonator technology can provide the simultaneous high-Q, high electromechanical coupling (k2 ), frequency tunability, low motional resistance (Rx), stop band rejection, self-switch ability, frequency accuracy, and power handling desired to select individual channels or small portions of a band over a wide RF range. Indeed, each technology...

System Design of a Lorentz Force MEMS Magnetic Sensor

Vashwar Rouf
David A. Horsley
Xiaoguang Liu
Rajeevan Amirtharajah
2015
The growing demand of including an inertial measurement unit (IMU) in smart-phones, tablets and wearable devices to facilitate navigation and other location based services is rapidly increasing the market for low cost inertial sensors. At present the most commonly used magnetic sensor is a hall-effect sensor and therefore typically an IMU contains two or more separate chips wire-bonded in a single package. Since a Lorentz force sensor can be designed in the same process as other inertial sensor, it increases the...