Ali Javey (Advisor)

Research Advised by Professor Ali Javey

Javey Group:  List of Projects | List of Researchers

Nanomaterials Processing Toward Large-scale Flexible/Stretchable Electronics

Toshitake Takahashi
Ali Javey
Tsu-Jae King Liu
Liwei Lin
2013

In recent years, there has been tremendous progress in large-scale mechanically flexible electronics, where electrical components are fabricated on non-crystalline substrates such as plastics and glass. These devices are currently serving as the basis for various applications such as flat-panel displays, smart cards, and wearable electronics.

In this thesis, a promising approach using chemically synthesized nanomaterials is explored to overcome various obstacles current technology faces in this field. Here, we use chemically synthesized semiconducting nanowires (...

High Energy Density Metal Oxide and Conducting Polymer Supercapacitors

Roseanne Warren
Liwei Lin
Albert P. Pisano
Ali Javey
2015

Supercapacitors are electrochemical energy storage devices characterized by rapid charge- discharge speeds, high power densities, and long cycle lifetimes compared to batteries.1,2 Supercapacitors have many promising applications as energy storage devices in electric vehicles, renewable energy systems, grid energy management, as well as stationary and portable electronics.2 A current limitation of supercapacitors is their low energy density compared to batteries, which hinders their application as stand-alone energy storage systems...

Electron Devices Based on Transition Metal Dichalcogenides

Mahmut Tosun
Ali Javey
Junqiao Wu
Liwei Lin
2016

Integrated circuits consists of building blocks called transistors. A transistor is a switch that enables logic operations to perform computing. Since the invention of the first integrated circuit, transistors have been scaled down in their dimensions to increase the density of transistors per unit area to enable more functionality. Transistor scaling is continued by introducing novel device structures and materials at each technology node. Due to the challenges such as short channel effects and the power consumption issues, novel materials are investigated as a candidate for next...

Fully Integrated Complementary Metal Oxide Semiconductor (CMOS) Bio-Assay Platform

Octavian Florescu
Bernhard E. Boser
Richard M. White
Ali Javey
Eva Harris
2010

We present a post-processed 6.25mm2 0.18μm Complementary Metal Oxide Semiconductor (CMOS) platform that leverages the advantages of super-paramagnetic bead labeling to integrate on-chip the label separation and detection functionalities required for high sensitivity bio-assays. The surfaces of the CMOS chip and of the magnetic beads are functionalized with bio-chemicals complementary to a target analyte. In a sandwich capture format, the presence of the target analyte will strongly bind 4.5μm magnetic bead labels to the...

Xiaobo Zhang

Alumni
Electrical Engineering and Computer Sciences
Professor Ali Javey (Advisor)
Ph.D. 2013

Toshitake Takahashi

Alumni
Electrical Engineering and Computer Sciences
Professor Ali Javey (Advisor)
Ph.D. 2013

Steven Chuang

Alumni
Electrical Engineering and Computer Sciences
Professor Ali Javey (Advisor)
Ph.D. 2014

Hui Fang

Alumni
Electrical Engineering and Computer Sciences
Professor Ali Javey (Advisor)
Ph.D. 2014

Capacitive-Gap MEMS Resonator-Based Oscillator Systems for Low-Power Signal Processing

Thura Lin Naing
Clark T.-C. Nguyen
Ali Javey
Liwei Lin
2015

Wireless technology, which already plays a major part in our daily lives, is expected to further expand to networks of billions of autonomous sensors in coming years: the so-called Internet of Things. In one vision, sensors employing low-cost, low-power wireless motes collect and transmit data through a mesh network while operating only on scavenged or battery power. RF MEMS provides one approach to the stringent power and performance required by sensor networks.

This dissertation presents improvement to these MEMS technologies and introduces new approaches for wireless...

Novel Processing Schemes for Material Systems on Amorphous and Flexible Substrates

Kevin Chen
Ali Javey
Ming C. Wu
Daryl Chrzan
2017

With the rise of the Internet of Things (IOT), demand for novel devices and sensors for a variety of applications has exploded, and as a result, there is a need for the development of new processing schemes and materials systems to accommodate the expanding needs of these applications. In particular,

Chapter 2 explores the growth of III-V semiconductors with quality approaching that of epitaxial thin films directly onto amorphous substrates using a new growth mode known as template liquid phase (TLP) crystal growth. The fundamental theory and limitations of TLP...