Albert P. Pisano (Advisor)

Knut Aasmundtveit

Alumni
Professor Albert P. Pisano (Advisor)
PostDoc 2007

Nuo Zhang

Alumni
Mechanical Engineering
Professor Albert P. Pisano (Advisor)
Ph.D. 2014

MEMS Resonant Strain Sensor Integration

David Myers
Albert P. Pisano
Liwei lin
Andrew Neureuther
2010

Despite commercial availability since the 1950’s, silicon strain sensors have not experienced the same success as other microdevices, such as accelerometers, pressure sensors, and inkjet heads. Strain sensors measure mechanical deformation and could be used in many structural components, improving safety, controls, and manufacturing tolerances. This thesis examines major strain sensing techniques and highlights both advantages and disadvantages of each. MEMS resonant strain gauges are identified to have superior performance over many traditional strain gauges in terms of sensitivity...

High-Q Aluminum Nitride RF MEMS Lamb Wave Resonators and Narrowband Filters

Ernest Ting-Ta Yen
Albert P. Pisano
Clark T.-C. Nguyen
Liwei Lin
Richard M. White
2012

The increasing demands for higher performance, advanced wireless and mobile communication systems have continuously driven device innovations and system improvements. In order to reduce power consumption and integration complexity, radio frequency (RF) microelectromechanical systems (MEMS) resonators and filters have been considered as direct replacements for off-chip passive components. In this dissertation, a new radio architecture for direct channel selection is explored. The primary elements in this new architecture include a multitude of closely-spaced narrowband filters (...

Electrospun Direct-write Multi-functional Nanofibers

Jiyoung Chang
Liwei Lin
Albert P. Pisano
2012

Multi-functional fibers by means of direct-write near-field electrospinning process have been developed for versatile applications on a wide variety of substrates, including flexible ones. Several mask-less lithographoy techniques have been established by using the direct- write fibers in dry etching, wet etching and lift-off processes. By selecting the proper functional materials, electrospun direct-write fibers have been demonstrated in prototype working devices, such as large array piezoelectric nanogenerators made of polymeric PVDF (Polyvinylidene fluoride) and direct-write micro...

Polymer Microfluidic Device for High-throughput Single-cell Encapsulation, Lysis, and Biological Assay

Timothy Brackbill
Albert P. Pisano
Liwei Lin
Amy Herr
2012

Single cell analysis is the present and future of biological research. It’s becoming clear that sub-populations of cells within a larger group can often be the culprit for diseases or malfunctions. In this work we aim to provide a tool that allows biological researchers to better analyze single cells within cell populations by removing the barrier to observing analytes contained within the cell’s membrane. By providing physical access to the intracellular compounds in a single cell, we can analyze individual cells for levels of analytes that were previously only available through...

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring

Sarah Wodin-Schwartz
Albert P. Pisano
Liwei Lin
2013

The advancement of renewable energy technologies is critical due to the unsustainable nature of currently used energy sources and the need to meet increasing energy demands. A broad and diverse energy plan is important for long term energy independence and stability. Geothermal energy sources including hydrothermal systems and enhanced geothermal systems (EGS) should play a key role in this energy plan. Geothermal energy is the most reliable, currently developed, schedulable alternative energy source. It is estimated that improvements in these systems have the potential to...

Harsh Environment Silicon Carbide UV Sensor and Junction Field-Effect Transistor

Wei-Cheng Lien
Albert P. Pisano
Tsu-Jae King Liu
Elad Alon
2013

A harsh environment can be defined by one or more of the following: High temperature, high shock, high radiation, erosive flow, and corrosive media. Among all the harsh environment applications, high temperature applications have drawn lots of attention due to the emerging activity in automotive, turbine engine, space exploration and deep-well drilling telemetry. Silicon carbide has become the candidate for these harsh environment applications because of its wide bandgap, excellent chemical and thermal stability, and high breakdown electric field strength. This dissertation details...

Aluminum Nitride Sensors for Harsh Environments

Fabian Goericke
Albert P. Pisano
Tsu-Jae King Liu
Liwei Lin
2013

Harsh environment applications include high temperature, pressure and mechanical shock. Aluminum nitride is a strong ceramic material with very good high temperature survivability. It also has piezoelectric properties that can be used for sensing applications and it can be deposited with good control as thin polycrystalline film for the fabrication of micro-electromechanical systems. In this dissertation, optimized deposition parameters for aluminum nitride films and characterization techniques for film stress gradients are investigated. Furthermore, two diff...

Microfluidic Reactors for the Controlled Synthesis of Nanoparticles

E. Yegan Erdem
Albert P. Pisano
Fiona M. Doyle
Liwei Lin
Tsu-Jae King Liu
2013

Nanoparticles have attracted a lot of attention in the past few decades due to their unique, size-dependent properties. In order to use these nanoparticles in devices or sensors effectively, it is important to maintain uniform properties throughout the system; therefore nanoparticles need to have uniform sizes or monodisperse. In order to achieve monodispersity, an extreme control over the reaction conditions is required during their synthesis. These reaction conditions such as temperature, concentration of reagents, residence times, etc. affect the...