Ali Javey (Advisor)

Research Advised by Professor Ali Javey

Javey Group:  List of Projects | List of Researchers

BPNX1044: Exploring Telluride-Based p-Type Channels for Various Functionalities (New Project)

Taehoon Kim
I K M Reaz Rahman
Naoki Higashitarumizu
Inha Kim
Hyong Min Kim
Shu Wang
2025

​Tellurium-based materials (tellurides) are promising materials for p-channel transistors due to their compatibility with various elements and deposition methods. This versatility facilitates integration into diverse device architectures and enables the implementation of tailored electrical, thermal, optical, and structural properties. We investigate tellurium-based materials and their deposition techniques to optimize these multifaceted characteristics for advanced electronic applications.

Project is currently funded by: Federal

BPNX1045: Scalable Bipolar Photodiodes for In-Sensor Spectral Computation (New Project)

Jamie Geng
Dehui Zhang
Dorottya Urmossy
2025

Machine learning enabled spectrometry has the potential to revolutionize fields like agriculture, field biology, and chemical metrology by allowing the identification of different targets in space via a spectral fingerprint. For example, fields of diseased crops requiring pesticides may show different reflectance spectra compared to healthy plants. However, current methods using a standard spectrometer and off-chip computer must acquire, transmit, then process complete reflectance or transmittance spectra, known as a hypercube, for every point of interest in space. This is costly in terms...

BPNX1026: Strong, Tunable Mid-IR Emission from Black Phosphorous Ink Film

Naoki Higashitarumizu
Shu Wang
Hyong Min Kim
Theodorus Jonathan Wijaya
2025

Black Phosphorus (bP) is a highly promising host material for future optoelectronic devices operating in the mid-wavelength infra-red (MWIR) regime of 3-5 um. bP is the most stable allotrope of phosphorous with a bulk direct bandgap of 0.3 eV that is highly tunable by alloying, applying strain, and varying the thickness, and with many remarkable electronic and optical properties ranging from low surface recombination velocity to high carrier mobility. Both MWIR LEDs and photodetectors based on mechanically exfoliated bP flakes operating at room temperature have shown superior...

BPN984: Large-Area Processable Two-Dimensional Material Films

Naoki Higashitarumizu
Theodorus Jonathan Wijaya
Hyong Min Kim
Shu Wang
Kyuho Lee
2025

Black phosphorus (BP) is a promising material for optoelectronic applications due to its direct bandgap at all thicknesses, and low Auger recombination coefficient at high carrier densities. BP, being a two-dimensional material, lacks scalability, for which techniques for its large-area processing are important. In this work, we find methodologies to utilize this material for large-scale optoelectronic applications.

Project currently funded by: Federal

BPNX1025: In-Sensor Visible to Mid-Infrared Spectral Machine Vision

Dehui Zhang
Jamie Geng
Shifan Wang
Hyong Min Kim
2025

Multispectral and hyperspectral imaging are important optical inspection technologies. They collect the spatial and spectral information of the incidental light into 3D hypercubes, which can be post-processed into material and structural mapping of the scene. However, acquiring and analyzing the 3D hypercubes set great challenges in data collection, transportation, storage, and computation. The much higher energy, bandwidth, and memory budgets limit the implementation of high-speed, high-resolution hyperspectral imaging to achieve intelligent machine vision. This project introduces an...

BPNX1028: Large Scale Synthesis of Optically Active Tellurium-Based Material

Shu Wang
Naoki Higashitarumizu
2025

Large-scale growth of high-quality semiconductors, the active component of devices, is the foundation of modern electronics. Recently, tellurium (Te) was identified as a promising material for optoelectronics due to its appealing optical properties and potential low-temperature wafer-scale production. In this project, we will develop a new method for controlled and scalable production of optically active tellurium.

Project is currently funded by: Federal

BPNX1024: Reusable Sweat Rate Sensor

Seung-Rok Kim
Yifei Zhan
Noelle Davis
Suhrith Bellamkonda
2025

Sweat rate can provide the precautious signal of hyperhidrosis, hypohidrosis, and autonomic dysfunction. Currently, microfluidic and hygrometer-based sweat rate sensors are two types of available real-time sweat rate sensors. However, microfluidic device has issues of low temporal resolution, limited volume capacity, and surrounding artifact dependencies, while hygrometer-based devices also has overfilling and environmental artifact issues. In this work, we present reusable sweat rate sensor for continuous monitoring of sweat rate with novel sensor design.

Project...

BPNX1022: Multiplexed Gas Sensors

Carla Bassil
2025

Gas sensing has long been an area of academic and industrial interest. However, state of the art sensors still lack selectivity and sensitivity when it comes to differentiating gases of similar compositions. In this work, we explore methods to create multiplexed gas sensors that can differentiate these mixtures with high accuracy and long-term stability.

Project is currently funded by: Federal

BPNX1031: Scalable Infrared Photodetectors based on Large-Grain Tellurium Film

Hyong Min Kim
Naoki Higashitarumizu
2025

Tellurium is a narrow-gap, p-type semiconductor with promising potential for future electronic and optoelectronic devices. Te’s band gap can be tuned from 0.31 eV in bulk form to 1.04 eV in monolayer form. Unlike many other competing 2D semiconductors, Te is air-stable and can be deposited on a substrate of choice by thermal evaporation or solution synthesis. Photodetectors based on solution-synthesized Te nanoflakes have already been demonstrated, with specific detectivity in near-IR at or above 10^9 Jones. However, solution-synthesis of Te nanoflakes is not scalable, and...

BPNX1023: CMOS-Compatible Doping of 2D Semiconductors

Inha Kim
Naoki Higashitarumizu
2025

2D materials are among the most promising candidates for next-generation semiconductor devices due to their exceptional electronic transport properties and composition of a single atomic layer, which offers significant advantages for integration density. However, high contact resistance and challenges in doping present obstacles to their practical applications. In this work, we aim to explore various methods to overcome these issues and achieve technological breakthroughs that will enable these materials to become integral components in a wide range of applications.

...