BERKELEY SENSOR & ACTUATOR CENTER
UC BERKELEY UC DAVIS
User: Guest |  Site Map |  My BSAC Profile
HOME  PROJECTS  THRUSTS  PUBLICATIONS  ABOUT BSAC  DIRECTORY  ALUMNI  FOR BSAC RESEARCHERS  EVENTS CALENDAR  SECURE LOGIN
Table of all Projects
     
 

BPN884: Anisotropic Proton Transport in Artificially Aligned Collagen Fiber

Project ID BPN884
Website
Start Date Thu 2017-Aug-17 16:08:17
Last Updated Fri 2017-Aug-18 14:23:31
Abstract Proton transportation is ubiquitous in biological signaling as well as enabled a broad range of modern device components. However, proton conductor using tunable, controllable and mass producible biological material is not yet developed for in vivo application to interface biological system. Here, we demonstrate anisotropic proton transport in the artificially aligned collagen fiber network, which is mimicking the nematic structure of the muscle fiber to show that aligned collagen can assist biological signaling as a protonic highway. Artificially aligned nematic collagen fiber network is synthesized by “grow-and-snap” method, which produces >94.2% of collagen fiber is aligned along the fluid streamline (± 10º), and >82.3% of collagen fibril is aligned along the direction of the fiber (± 10º). We demonstrate that proton conduction in nematic collagen network is Grotthuss hopping along the backbone of tropocollagen chain according to the measurement of the activation energy of the proton transportation (~ 0.19 eV) and proton conduction along the tropocollagen chain result in the surface-charge mediated two-dimensional transport, which is generally observed in the nanofluidic channels. According to the fiber orientation dependent proton conduction measurement, anisotropic proton transportation is found due to the structural anisotropy and horizontally aligned collagen fiber network exhibited higher conductance over vertically aligned collagen fiber. The understanding of the mechanism of collagen assistance to proton transport may build up a theoretical basis for further development of therapy method to cure wound-induced proton-transfer disability.
Status New
Funding Source Foundation
IAB Research Area BioMEMS
Researcher(s) Doyeon Bang
Advisor(s) Luke P. Lee
Detailed Information
Secure Access

Private Abstract
Research Report
Poster
Summary Slide PDF | VIDEO
Active Feedback (or Request for Response)

 

  • Copyright Notification: All papers downloaded from this site are © University of California or the publisher, all rights reserved. Contact the BSAC Webmaster for permission related to copyrighted materials.
  • Links on these pages to commercial sites do not represent endorsements by UC or its affiliates.
  • Privacy Policy
  • Contact Us

   webmaster@bsac.eecs.berkeley.edu
  User logged in as: Guest
  User Idle since: November 21, 2017, 4:00 am