BERKELEY SENSOR & ACTUATOR CENTER
UC BERKELEY UC DAVIS
User: Guest |  Site Map |  My BSAC Profile
HOME  PROJECTS  THRUSTS  PUBLICATIONS  ABOUT BSAC  DIRECTORY  ALUMNI  FOR BSAC RESEARCHERS  EVENTS CALENDAR  SECURE LOGIN
Table of all Projects
     
 

BPN609: Ultra-Compact Photodetectors on Silicon photonics

Project ID BPN609
Website
Start Date Tue 2011-Feb-01 21:15:25
Last Updated Mon 2014-Feb-03 14:27:00
Abstract As CMOS devices shrink in physical size, electrical interconnects between the devices will consume an ever-greater proportion of total chip power. A promising solution is to use silicon photonics for intra- and inter-chip communications. To be cost effective, both the optical transmitter and receiver should be made small, highly efficient, and CMOS compatible. Shrinking the photodiode will increase sensitivity and energy efficiency, but as it gets very small, the capacitance of the wire to the first amplifying stage in the receiver becomes significant. We present a solution which integrates the photodiode and first stage transistor in the form of an integrated germanium gate photoMOSFET. The rapid melt growth technique is used to integrate high quality single crystal germanium onto a silicon waveguide integrated device in a CMOS process. Due to the high quality of the germanium, the responsivity of the photoMOSFETs can be driven to over 10 A/W at 1550nm. Further scaling of these devices is possible only if the reduced absorption from a small size is addressed. Electromagnetic simulations describe a highly efficient metal-optic cavity, supporting efficient absorption in sub-fF scale devices.
Status Continuing
Funding Source Industry
IAB Research Area NanoPlasmonics, Microphotonics & Imaging
Researcher(s) Ryan Going, Tae Joon Seok
Advisor(s) Ming C. Wu
Detailed Information
Secure Access

Private Abstract
Research Report
Poster
Summary Slide
Can’t view video click here
Active Feedback (or Request for Response)

 

  • Copyright Notification: All papers downloaded from this site are © University of California or the publisher, all rights reserved. Contact the BSAC Webmaster for permission related to copyrighted materials.
  • Links on these pages to commercial sites do not represent endorsements by UC or its affiliates.
  • Privacy Policy
  • Contact Us

   webmaster@bsac.eecs.berkeley.edu
  User logged in as: Guest
  User Idle since: July 31, 2014, 2:27 am